
ARM® DSTREAM™ and RVI™

Using the Debug Hardware Configuration Utilities
Copyright © 2010 ARM. All rights reserved.
ARM DUI 0498B (ID121610)

ARM DSTREAM and RVI
Using the Debug Hardware Configuration Utilities

Copyright © 2010 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

This product includes software developed by the Apache Software Foundation (see http://www.apache.org).

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

May 2010 A Non-Confidential First release.

November 2010 B Non-Confidential Second Release
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. ii
ID121610 Non-Confidential

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

Class A

Important: This is a Class A device. In residential areas, this device may cause radio interference. The user should take
the necessary precautions, if appropriate.

CE Declaration of Conformity

The system should be powered down when not in use.

It is recommended that ESD precautions be taken when handling DSTREAM, RVI, and RVT equipment.

The DSTREAM, RVI, and RVT modules generate, use, and can radiate radio frequency energy and may cause harmful
interference to radio communications. There is no guarantee that interference will not occur in a particular installation.
If this equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:
• ensure attached cables do not lie across the target board
• reorient the receiving antenna
• increase the distance between the equipment and the receiver
• connect the equipment into an outlet on a circuit different from that to which the receiver is connected
• consult the dealer or an experienced radio/TV technician for help

Note
 It is recommended that wherever possible shielded interface cables be used.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. iii
ID121610 Non-Confidential

Contents
ARM DSTREAM and RVI Using the Debug Hardware
Configuration Utilities

Chapter 1 Conventions and feedback

Chapter 2 Getting started with the debug hardware configuration utilities
2.1 About the debug hardware configuration utilities .. 2-2
2.2 Starting the debug hardware configuration utilities ... 2-3
2.3 Scanning for available debug hardware units ... 2-5
2.4 Identifying a debug hardware unit ... 2-7
2.5 Connecting to a debug hardware unit ... 2-8

Chapter 3 Configuring network settings for your debug hardware unit
3.1 About configuring network settings ... 3-2
3.2 Determining the correct network settings ... 3-3
3.3 The Configure debug_hardware device dialog box .. 3-4
3.4 The Configure new debug_hardware device dialog box ... 3-6
3.5 Debug hardware unit network settings ... 3-7
3.6 Configuring the network settings for a debug hardware unit .. 3-8
3.7 Modifying the network settings for a debug hardware unit ... 3-10
3.8 Restarting your debug hardware unit .. 3-12
3.9 Troubleshooting .. 3-13

Chapter 4 Managing the firmware on your debug hardware unit
4.1 About templates .. 4-2
4.2 Viewing software version numbers ... 4-3
4.3 Installing a firmware update or patch .. 4-4
4.4 Upgrading an LVDS probe .. 4-7
4.5 Restarting the debug hardware unit in RVI Update .. 4-8
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. iv
ID121610 Non-Confidential

Contents
Chapter 5 Creating debug hardware target configurations
5.1 About creating debug hardware target configurations .. 5-3
5.2 Creating a debug hardware configuration file ... 5-4
5.3 Opening an existing debug hardware configuration file in RVConfig 5-6
5.4 Configuring a JTAG scan chain .. 5-7
5.5 About configuring a device list .. 5-9
5.6 Autoconfiguring a scan chain .. 5-11
5.7 Adding devices to the scan chain ... 5-12
5.8 Removing devices from the scan chain .. 5-16
5.9 Changing the order of devices on the scan chain ... 5-17
5.10 Select Platform dialog box .. 5-18
5.11 Export As Platform dialog box .. 5-19
5.12 Exporting a configuration to a platform file ... 5-20
5.13 Device Properties dialog box .. 5-21
5.14 Changing the properties of a device ... 5-23
5.15 Setting the clock speed ... 5-24
5.16 About adaptive clocking .. 5-25
5.17 Device configuration settings .. 5-26
5.18 Debug hardware Advanced settings ... 5-33
5.19 Trace configuration settings .. 5-36
5.20 Configuring Reset options in debug hardware .. 5-37
5.21 Configuring SecurCore behavior if the processor clock stops when stepping instructions ..

5-38
5.22 Configuring TrustZone enabled processor behavior when debug privileges are reduced ...

5-39
5.23 About platform detection and selection ... 5-40
5.24 Autodetecting a platform ... 5-41
5.25 Manually selecting a platform ... 5-43
5.26 Clearing a platform assignment from a debug hardware configuration 5-44
5.27 Adding new platforms ... 5-45
5.28 Adding autoconfigure support for new platforms .. 5-46
5.29 Configuring the debug hardware Advanced settings .. 5-47
5.30 Saving your changes .. 5-49
5.31 Disconnecting from a debug hardware unit .. 5-50
5.32 Configuring a target processor for virtual Ethernet ... 5-51
5.33 CoreSight device names and classes ... 5-52

Chapter 6 Configuring CoreSight systems
6.1 About CoreSight system configuration ... 6-2
6.2 Reading the CoreSight ROM table ... 6-3
6.3 CoreSight autodetection ... 6-4
6.4 Autodetecting Serial Wire Debug .. 6-5
6.5 About trace associations ... 6-6
6.6 Defining CoreSight trace associations .. 6-7
6.7 Format of trace associations ... 6-8
6.8 Trace Association Editor dialog box ... 6-9
6.9 Setting up a CoreSight trace association file .. 6-11
6.10 Loading a trace association file .. 6-13
6.11 CoreSight topology and associations for the CoreSight DK11 6-15
6.12 CoreSight topology and associations for the Cortex-R4 FPGA 6-17
6.13 CoreSight topology and associations for the Cortex-M3 FPGA 6-19
6.14 CoreSight topology and associations for multiple trace sources 6-21
6.15 Configuring CoreSight processors .. 6-22
6.16 Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems 6-23
6.17 Configuring CoreSight systems with multiple devices per JTAG-AP multiplexor port 6-25

Chapter 7 Using Trace
7.1 About using trace hardware .. 7-2
7.2 Trace hardware capture rates ... 7-3
7.3 Configuring trace lines (DSTREAM and RVT2 only) .. 7-4
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. v
ID121610 Non-Confidential

Contents
7.4 Configuring your debugger for trace capture .. 7-6

Chapter 8 Debugging with your debug hardware unit
8.1 Post-mortem debugging ... 8-2
8.2 Semihosting .. 8-4
8.3 Adding an application SVC handler when using debug hardware 8-5
8.4 Cortex-M3 semihosting ... 8-7
8.5 Hardware breakpoints ... 8-8
8.6 Software instruction breakpoints ... 8-9
8.7 Processor exceptions ... 8-10
8.8 Breakpoints and the program counter .. 8-11
8.9 Interaction between breakpoint handling in the debug hardware and your debugger 8-12
8.10 Problems setting breakpoints ... 8-14
8.11 Strategies used by debug hardware to debug cached processors 8-15
8.12 Considerations when debugging processors with caches enabled 8-16
8.13 Debugging applications in ROM ... 8-17
8.14 Debugging from reset ... 8-18
8.15 Debugging with a simulated reset ... 8-19
8.16 Debugging with a reset register .. 8-20
8.17 Debugging with a target reset ... 8-21
8.18 Debugging systems with ROM at the exception vector .. 8-22

Chapter 9 Configuring debug hardware for GDB
9.1 About configuring debug hardware for debugging with GDB .. 9-3
9.2 Feature support when debugging with GDB ... 9-4
9.3 Debugging modes for GDB ... 9-5
9.4 Debug hardware TCP/IP port numbering ... 9-6
9.5 DCC modes .. 9-7
9.6 Building for standalone target platforms ... 9-8
9.7 Methods of connecting from remote GDB sessions ... 9-9
9.8 Connection methods for each debugging mode ... 9-10
9.9 Connections to a target without built-in GDB support (RVI-GDB) 9-11
9.10 Connections to a target with a GDB stub (Target-GDB) ... 9-13
9.11 Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) ... 9-15
9.12 Connections to a target OS using gdbserver (GDBserver) ... 9-17
9.13 Connections to a target OS using NFS (GDB-NFS) ... 9-19
9.14 Preparing your debug hardware for remote GDB connections 9-21
9.15 Connecting to targets from GDB through debug hardware .. 9-22
9.16 Setting DCC parameters ... 9-23
9.17 DCC and interrupts ... 9-25
9.18 Loading and booting a complete system .. 9-26
9.19 rvigdbconfig command syntax .. 9-27
9.20 rviload command syntax ... 9-28
9.21 RVIahbload command syntax ... 9-30
9.22 RVIvec command syntax .. 9-32
9.23 Multiprocessor debugging with GDB and debug hardware .. 9-34

Chapter 10 Troubleshooting your debug hardware unit
10.1 Multiple programs attempting to scan ... 10-2
10.2 USB server not accessible .. 10-3
10.3 Connection times out .. 10-4
10.4 Other active connections .. 10-5
10.5 A debug hardware unit is not listed ... 10-6
10.6 Auto Configure button is disabled in RVConfig ... 10-7
10.7 Remove button is disabled in RVConfig ... 10-8
10.8 Troubleshooting firmware upgrade installations ... 10-9
10.9 Troubleshooting autoconfigation of a scan chain ... 10-11
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. vi
ID121610 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands, file

and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM® processor
signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your supplier
and give:
• your name and company
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 1-1
ID121610 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0498B
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center, http://infocenter.arm.com/help/index.jsp
• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html

• ARM Support and Maintenance,
http://www.arm.com/support/services/support-maintenance.php.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 1-2
ID121610 Non-Confidential

Chapter 2
Getting started with the debug hardware
configuration utilities

The following topics describe how to get started with using the debug hardware configuration
utilities:
• About the debug hardware configuration utilities on page 2-2
• Starting the debug hardware configuration utilities on page 2-3
• Scanning for available debug hardware units on page 2-5
• Identifying a debug hardware unit on page 2-7
• Connecting to a debug hardware unit on page 2-8.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-1
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.1 About the debug hardware configuration utilities
The debug hardware configuration utilities enable you to connect to the debug hardware unit
that provides the interface between your development platform and your PC. The following
utilities are provided:

RVI Config IP utility
Used to configure the IP address on a debug hardware unit. This enables you to
access the unit over Ethernet.

RVConfig utility
Used to configure a debug hardware unit. This enables you to:
• Identify the target devices on your development platform. These devices

can be one or more processors, and optional trace devices or CoreSight™
devices.

• Configure debug hardware and target-related features that are appropriate
to correctly debug your development platform.

• Save the configuration to a device configuration file. The device
configuration file is used by your debugger to connect to each target
processor on your development platform.

RVI Update utility
Used to update the firmware and devices on a debug hardware unit and probe.

Note
 This document applies to the ARM® DSTREAM™ debug and trace unit and the ARM RVI™
debug unit. The term trace hardware refers to:
• the built-in trace hardware of a DSTREAM unit
• an ARM RVT or ARM RVT2™ trace capture unit for RVI.

Differences in debug and trace hardware features between the units are explicitly stated.

2.1.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Scanning for available debug hardware units on page 2-5
• Connecting to a debug hardware unit on page 2-8
• Chapter 3 Configuring network settings for your debug hardware unit
• Chapter 4 Managing the firmware on your debug hardware unit
• Chapter 5 Creating debug hardware target configurations.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-2
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.2 Starting the debug hardware configuration utilities
How you start the required debug hardware configuration utility depends on:
• your PC operating system
• whether you installed the host software with an ARM® software development product
• whether you are running a debugger session.

Note
 For information about debugging with your own debugger, see your debugger documentation.

2.2.1 Starting the RVConfig utility on Windows

To start the required debug hardware configuration utility on Windows platforms:

1. Select Start → All Programs → product_group→ option_path
where product_group and option_path are the names used by your ARM software
development product.

2. Select the option for the utility you want to use:
• select name Config IP to start the RVI Config IP utility
• select name Configuration to start the RVConfig utility
• select name Update to start the RVI Update utility
where name is the name used by your ARM software development product.

Note
 Be aware that an option for the RVConfig utility might not be available on the Start menu

for some ARM products.

For more information, see the documentation for your ARM software development product.

2.2.2 Starting the RVConfig utility on Red Hat Linux

To start the required debug hardware configuration utility on Red Hat Linux platforms, select
the appropriate shortcut. The shortcut depends on the version of Red Hat Linux and the desktop
environment that you are using.

If no desktop shortcut is available, at the command-line:

1. Run the following setup script to configure the paths:
source RVDS41env.posh

2. Enter the command for the utility you want to use:
• enter rviconfigip to start the RVI Config IP utility
• enter rvconfig to start the RVConfig utility
• enter rviupdate to start the RVI Update utility.

2.2.3 Accessing the RVConfig utility from your Debugger

You can access the RVConfig utility directly from your debugger. See your debugger
documentation for details on how to do this.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-3
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.2.4 See also

Tasks
• Scanning for available debug hardware units on page 2-5
• Connecting to a debug hardware unit on page 2-8.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-4
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.3 Scanning for available debug hardware units
To scan for available debug hardware units:

1. Start the required configuration utility, for example RVConfig.

2. Click the Scan button to scan for debug hardware units that are connected to your local
network or to a USB port on your PC. The Scan button becomes animated to indicate that
a scan is in progress. When the configuration utility finds a unit, it adds it to the list of
available units. The following figure shows an example:

Figure 2-1 RVConfig utility

Note
 Any unit shown in light gray is one that has responded to browse requests but does not

have a valid IP address. You cannot connect to that unit by TCP/IP until you have
configured it for use on your network.

The scan tool searches for debug hardware units that are connected to your local network
or USB ports on your PC. The units found are listed in the browser on the right of the
window.

Note
 Units that are connected to different networks do not appear in the configuration utility.

Consequently, if you want to connect to a debug hardware unit on a separate network, you
must know the IP address of that unit.

If you want to stop scanning, click the Scan button. You can click the Scan button again
at any time to force a rescan for available debug hardware units and update the list.

3. Select Exit from the File. This disconnects from any connected unit, and exits the
configuration utility.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-5
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.3.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Identifying a debug hardware unit on page 2-7
• Connecting to a debug hardware unit on page 2-8
• Chapter 3 Configuring network settings for your debug hardware unit.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-6
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.4 Identifying a debug hardware unit
If you have multiple debug hardware units on a network, you can identify the unit you want to
access from the configuration utility.

To identify the debug hardware unit you want to access:

1. Select a unit from the list, or enter an IP address of a unit if it is on a different network.

2. Click Identify.
The identification indicators on the selected debug hardware unit flash for 5 seconds. If
you have selected the wrong unit, select another unit from the list and repeat this step.

Note
 On RVI, all LEDs on the front panel flash during identification.

On DSTREAM, the DSTREAM logo flashes during identification.

2.4.1 See also

Tasks
• Scanning for available debug hardware units on page 2-5
• Connecting to a debug hardware unit on page 2-8
• Chapter 3 Configuring network settings for your debug hardware unit.

Reference
ARM® DSTREAM™ Setting Up the Hardware:
• The DSTREAM debug and trace unit, ../com.arm.doc.dui0481b/CHDCJEFH.html.
ARM® RVI™ and RVT™ Setting Up the Hardware:
• The RVI debug unit, ../com.arm.doc.dui0481b/CHDCJEFH.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-7
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
2.5 Connecting to a debug hardware unit
You must connect to your debug hardware unit to create a configuration file that contains details
of your target hardware and the debug hardware. The configuration file is required by your
debugger to connect to your target development platform and debug your software.

2.5.1 Prerequisites

Before you can connect to a debug hardware unit, make sure you have:

1. Set up, or have access to, the debug hardware unit that interfaces with your development
platform.

2. Installed the correct version of the host software on your PC for your debug hardware unit.

2.5.2 Procedure

To connect to a debug hardware unit:

1. Start the required configuration utility, for example the RVConfig utility.

2. If you do not see any debug hardware units listed for your local network, click the Scan
button. The Scan button becomes animated to indicate that a scan is in progress. When
the utility finds a debug hardware unit on your local network, it is added to the list of
available units. The following figure shows an example:

Figure 2-2 RVConfig utility showing debug hardware units

Note
 The scan tool only searches for debug hardware units that are connected to your local

network or USB ports on your PC. Therefore, units that are connected to a different
network do not appear in the configuration utility. Consequently, if you want to connect
to a debug hardware unit that is not accessible on your local network, ensure that you
know the IP address of that debug hardware unit.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-8
ID121610 Non-Confidential

Getting started with the debug hardware configuration utilities
Any unit shown in light gray is one that has responded to browse requests but does not
have a valid IP address. You cannot connect to that unit by TCP/IP until you have
configured it for use on your network.
Alternatively, connect the debug hardware unit directly to your PC using a USB cable.

3. If multiple units are listed, and you are unsure about the debug hardware unit you want to
use:
a. Select a unit in the list, or enter an IP address of a unit on a different network.
b. Click Identify. The identification indicators on the unit flash for five seconds.

Note
 On RVI, all LEDs on the front panel flash during identification.

On DSTREAM, the DSTREAM logo flashes during identification.

4. To connect to your required unit, select the unit and click Connect. Alternatively, do one
of the following:
• Double-click on the unit you want to connect to.
• In the IP Address/Host Name field, enter either the IP address or host name of the

device you want to connect to and click Connect.
When a connection has been established, the configuration utility display changes to show
the configuration features provided by that utility.
If you have problems connecting to a debug hardware unit, you must troubleshoot the
debug hardware connections.

5. Select Exit from the File menu. This disconnects from any connected unit, and exits the
configuration utility.

2.5.3 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Scanning for available debug hardware units on page 2-5
• Scanning for available debug hardware units on page 2-5
• Chapter 3 Configuring network settings for your debug hardware unit
• Chapter 10 Troubleshooting your debug hardware unit.

Reference
ARM® DSTREAM™ Setting Up the Hardware:
• The DSTREAM debug and trace unit, ../com.arm.doc.dui0481b/CHDCJEFH.html.
ARM® RVI™ and RVT™ Setting Up the Hardware:
• The RVI debug unit, ../com.arm.doc.dui0481b/CHDCJEFH.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 2-9
ID121610 Non-Confidential

Chapter 3
Configuring network settings for your debug
hardware unit

The following topics describe how to configure the network settings for your debug hardware unit:
• About configuring network settings on page 3-2
• Determining the correct network settings on page 3-3
• The Configure debug_hardware device dialog box on page 3-4
• The Configure new debug_hardware device dialog box on page 3-6
• Debug hardware unit network settings on page 3-7
• Configuring the network settings for a debug hardware unit on page 3-8
• Modifying the network settings for a debug hardware unit on page 3-10
• Restarting your debug hardware unit on page 3-12
• Troubleshooting on page 3-13.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-1
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.1 About configuring network settings
The configuration process depends on the way in which the debug hardware unit is connected
to the host computer, and whether or not your network uses Dynamic Host Configuration
Protocol (DHCP).

If you have connected your debug hardware unit to an Ethernet network or directly to the host
computer using an Ethernet cross-over cable, you must configure the network settings before
you can use the unit for debugging. You have only to configure the network settings once.

The following connections are possible:
• Your debug hardware unit is connected to your local network that uses DHCP. In this

situation, you do not have to know the Ethernet address of the unit, but you must enable
DHCP.

• Your debug hardware unit is connected to your local network that does not use DHCP. In
this situation, you must assign a static IP address to the debug hardware unit.

Note
 If you have connected your debug hardware unit directly to the host computer using a USB
cable, and you do not intend to connect it to a network, you do not have to configure the network
settings.

3.1.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Determining the correct network settings on page 3-3
• Configuring the network settings for a debug hardware unit on page 3-8
• Chapter 10 Troubleshooting your debug hardware unit.

ARM® DSTREAM™ Setting Up the Hardware:
• Connecting the DSTREAM debug and trace unit, ../com.arm.doc.dui0481b/I1004916.html

ARM® RVI™ and RVT™ Setting Up the Hardware:
• Connecting the RVI debug unit, ../com.arm.doc.dui0515b/I1004916.html

Reference
• Debug hardware unit network settings on page 3-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-2
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.2 Determining the correct network settings
Before you can configure the network settings, you must first determine the correct network
settings for your debug hardware unit. To do this, you must consult with the system
administrator for your network.

The information that you require depends on whether your network uses Dynamic Host
Configuration Protocol (DHCP):

3.2.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3.

Reference
• The Configure debug_hardware device dialog box on page 3-4
• The Configure new debug_hardware device dialog box on page 3-6.

Table 3-1 Required debug hardware network settings

Information Using DHCP Not using DHCP

Host Name Yes Yes

IP Address - Yes

Default Gateway - Yes

Subnet Mask - Yes

Ethernet Address Yes Yes

Ethernet Type Yes Yes
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-3
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.3 The Configure debug_hardware device dialog box
The Configure debug_hardware device dialog box enables you to modify the network settings
on a debug hardware unit that has previously been configured. The following figure shows an
example:

Figure 3-1 The Configure debug_hardware device dialog box

Note
 You can modify the settings only for a debug hardware unit that is on your local network or that
is connected to a USB port on your PC.

The network settings available depend on whether or not your network uses Dynamic Host
Configuration Protocol (DHCP):

• If your network uses DHCP, you must know:
— the hostname that you want to use for your unit (if any)
— the Ethernet type of your network.

• If your network does not use DHCP, you must know:
— the hostname that you want to use for your unit (if any)
— the IP address that you want to use for your unit
— the default gateway for your network (if it has one)
— the subnet mask for your network.
— the Ethernet type of your network.

Note
 The Ethernet Address field is read-only.

After setting up the network settings, click Configure to write the values to the unit.

Click Exit to close the Configure debug_hardware device dialog box

3.3.1 See also

Tasks
• About configuring network settings on page 3-2
• Determining the correct network settings on page 3-3
• Configuring the network settings for a debug hardware unit on page 3-8
• Modifying the network settings for a debug hardware unit on page 3-10
• Troubleshooting on page 3-13.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-4
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
Reference
• The Configure new debug_hardware device dialog box on page 3-6
• Debug hardware unit network settings on page 3-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-5
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.4 The Configure new debug_hardware device dialog box
The Configure new debug_hardware device dialog box enables you to:

• configure the network settings for a debug hardware unit that has not been previously
configured

• configure the network settings for a debug hardware unit that is on a different subnet.

The following figure shows an example:

Figure 3-2 The Configure new debug_hardware device dialog box

The network settings available depend on whether or not your network uses Dynamic Host
Configuration Protocol (DHCP):

• If your network uses DHCP, you must know:
— the hostname that you want to use for your unit (if any)
— the Ethernet address of unit
— the Ethernet type of your network.

• If your network does not use DHCP, you must know:
— the hostname that you want to use for your unit (if any)
— the IP address that you want to use for your unit
— the default gateway for your network (if it has one)
— the subnet mask for your network.
— the Ethernet address of unit
— the Ethernet type of your network.

If more than one unit is listed in the browser, click Identify to identify your unit. The
Identification LEDs on the selected unit flash for five seconds.

After setting up the network settings, click Configure to write the values to the unit.

Click Exit to close the Configure new debug_hardware device dialog box

3.4.1 See also

Tasks
• About configuring network settings on page 3-2
• Determining the correct network settings on page 3-3
• Configuring the network settings for a debug hardware unit on page 3-8.

Reference
• Debug hardware unit network settings on page 3-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-6
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.5 Debug hardware unit network settings
The following network settings are available for a debug hardware unit:

DHCP Enables or disables Dynamic Host Configuration Protocol (DHCP):
• If your network uses DHCP, you must know the hostname that you want to

use for your debug hardware unit (if any).

Note
 You do not have to know the IP address for your debug hardware unit, or

the default gateway and subnet mask for your network, because these
settings are fetched from a DHCP server on your network.

• If your network does not use DHCP, you must know:
— the hostname to use for your debug hardware unit (if any)
— the IP address to use for your debug hardware unit
— the default gateway for your network (if it has one)
— the subnet mask for your network.

Host Name The host name for the unit. This must contain only the alphanumeric characters
(A to Z, a to z, and 0 to 9) and the - character, and must be no more than 39
characters long.

IP Address The static IP address to use when DHCP is disabled.

Default Gateway
The default gateway to use when DHCP is disabled.

Subnet Mask
The subnet mask to use when DHCP is disabled.

Ethernet Address
The Ethernet address of the unit.

Ethernet Type
The type of network you are using:
• If you know the type of network, select the type. The options are:

— 10-MBit, Half Duplex
— 10-MBit, Full Duplex
— 100-MBit, Half Duplex
— 100-MBit, Full Duplex.

• Otherwise, select Auto-Detect.

3.5.1 See also

Tasks
• About configuring network settings on page 3-2
• Configuring the network settings for a debug hardware unit on page 3-8
• Troubleshooting on page 3-13.

Reference
• The Configure debug_hardware device dialog box on page 3-4
• The Configure new debug_hardware device dialog box on page 3-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-7
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.6 Configuring the network settings for a debug hardware unit
If you have a debug hardware unit that does not have a valid IP address, or is on a different
network, you must manually enter the Ethernet address during configuration.

3.6.1 Prerequisites

Before you can configure the network settings, you must first determine the correct network
settings for your debug hardware unit:

• If you do not want to use DHCP, then you must obtain an IP Address, Default Gateway,
and Subnet Mask from your network administrator.

• If you want to use DHCP, you must inform your network administrator of the Ethernet
Address of the unit, so that it can be added to the DHCP server.

3.6.2 Procedure

To configure your new debug hardware unit:

1. Open the RVI Config IP utility.

2. If the debug hardware unit is on your local network or connected to a USB port on your
PC, continue at step 3.
Otherwise, continue at step 6.

3. Click the Scan tool to scan for debug hardware units.

Note
 Only debug hardware units that are on your local network or connected to a USB port on

your PC are listed.

4. Select the debug hardware unit you want to configure.

5. Click the Identify tool to verify that the identification LEDs flash on the correct debug
hardware unit.

6. Click the Config New tool. The Configure new debug_hardware device dialog box
appears, as shown in the following figure:

Figure 3-3 The Configure new debug_hardware device dialog box

7. Determine the Ethernet address of your debug hardware unit by reading the label on the
side of the unit, and enter it into the Ethernet Address field.

8. If you are not using DHCP:
a. Deselect DHCP.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-8
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
b. Enter the required details in the following fields:
• IP Address
• Default Gateway
• Subnet Mask.

c. Continue at step 9.

9. If you are using DHCP, select DHCP.

10. Enter the hostname in the Host Name field. This must contain only the alphanumeric
characters (A-Z, a-z, and 0-9) and the - character, and must be no more than 255 characters
long.

11. Select the required Ethernet Type:
• if you know the type of network that you are using, select that type
• otherwise, select Auto-Detect.

12. Click Configure.
The debug hardware unit restarts. During the restart the unit is removed from the list of
units. When the restart is complete, the unit re-appears in the list of units, with the new
network settings.

Note
 If the debug hardware unit is using DHCP, the list of units might display its IP Address

as 127.0.0.2. This is a dummy address that the debug hardware unit uses when it fails to
obtain an IP address from the DHCP server.
The list of units shows the correct address if the DHCP server has assigned it.

3.6.3 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Scanning for available debug hardware units on page 2-5
• Determining the correct network settings on page 3-3
• Troubleshooting on page 3-13
• Chapter 10 Troubleshooting your debug hardware unit.

Concepts
• About configuring network settings on page 3-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-9
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.7 Modifying the network settings for a debug hardware unit
You can modify the network settings of a debug hardware unit only if that unit is on your local
network or connected to a USB port on your PC.

Note
 If the debug hardware unit is on a different network, you must use the Configure New
debug_hardware device dialog box.

3.7.1 Prerequisites

Before you can configure the network settings, you must first determine the correct network
settings for your debug hardware unit:

• If you do not want to use DHCP, then you must obtain an IP Address, Default Gateway,
and Subnet Mask from your network administrator.

• If you want to use DHCP, you must inform your network administrator of the Ethernet
Address of the unit, so that it can be added to the DHCP server.

3.7.2 Procedure

To configure your debug hardware unit by manually entering an Ethernet address:

1. Open the RVI Config IP utility.

2. Click the Scan tool to scan for debug hardware units.

3. Select the debug hardware unit you want to modify.

4. Click the Identify tool to verify that the identification LEDs flash on the correct debug
hardware unit.

5. Click the Configure tool to display the Configure debug_hardware device dialog box. An
example is shown in the following figure:

Figure 3-4 The Configure debug_hardware device dialog box

Note
 The Ethernet Address field is read-only.

6. If you are not using DHCP:
a. Deselect DHCP.
b. Enter the required details in the following fields:

• IP Address
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-10
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
• Default Gateway
• Subnet Mask.

c. Continue at step 9.

7. If you are using DHCP, select DHCP.

8. Enter the hostname in the Host Name field. This must contain only the alphanumeric
characters (A-Z, a-z, and 0-9) and the - character, and must be no more than 255 characters
long.

9. Select the required Ethernet Type:
• if you know the type of network that you are using, select that type
• otherwise, select Auto-Detect.

10. Click Configure.
The debug hardware unit restarts. During the restart, the unit is not present in the list.
When the unit has restarted, it re-appears in the list of units with the new network settings.

Note
 If the debug hardware unit is using DHCP, the list of units might display its IP Address

as 127.0.0.2. This is a dummy address that the debug hardware unit uses when it fails to
obtain an IP address from the DHCP server.
The list of units shows the correct address if the DHCP server has assigned it.

3.7.3 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Scanning for available debug hardware units on page 2-5
• Determining the correct network settings on page 3-3
• Troubleshooting on page 3-13
• Configuring the network settings for a debug hardware unit on page 3-8
• Chapter 10 Troubleshooting your debug hardware unit.

Concepts
• About configuring network settings on page 3-2.

Reference
• The Configure debug_hardware device dialog box on page 3-4
• The Configure new debug_hardware device dialog box on page 3-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-11
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.8 Restarting your debug hardware unit
The RVI Config IP utility restarts the networking software on the debug hardware unit whenever
you change its settings. If necessary, select Restart from the RVI menu to force the networking
software to restart.

You might want to restart the networking software on the debug hardware unit to get new
network settings from the DHCP server. To do this, select Restart from the RVI menu.

3.8.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-12
ID121610 Non-Confidential

Configuring network settings for your debug hardware unit
3.9 Troubleshooting
If you encounter problems when configuring network settings for your debug hardware unit, see
the following:

3.9.1 Why can’t I see my DSTREAM or RVI unit on the network?

Seeing or browsing for DSTREAM or RVI units on the network relies on the local area network
(LAN) allowing propagation of broadcast packets (UDP) on ports 30000 and 30001. It is
common to limit the propagation of these types of packets to a localized network region to
prevent congestion, but it might be possible to allow propagation of packets on these specific
ports. Contact your network administrator to request this modification.

Note
 This issue is seen when a DSTREAM or RVI unit is behind any network component that filters
network traffic, such as a firewall.

3.9.2 When is it appropriate to assign a fixed IP address to my DSTREAM or RVI unit?

If it is not possible to browse for the DSTREAM or RVI unit on the network using the tools, you
can attempt to locate the unit by specifying the host name of the unit, for example
MyDSTREAM.local.example.com.

If the host name cannot be resolved, you can use an IP address, for example 192.168.1.16. In
this case, you might want to assign a fixed IP address to the DSTREAM or RVI unit to prevent
this IP address from changing. To request a fixed IP address, contact your network
administrator. When the address is assigned to the DSTREAM or RVI unit, you can confirm its
correct operation by using the ping command from a DOS or UNIX prompt prior to connecting
the tools.

A fixed IP address is also appropriate when an Ethernet cross-over cable is used. In this case, a
private network between the host PC and the unit is created, although this might not be
necessary due to the availability of a USB connection.

3.9.3 Why does my debug connection fail when I connect the Mictor cable to my target?

Some target systems have their debug signals connected to both a Mictor trace connector and a
separate debug-only connector. In this scenario, if you connect the Mictor cable alongside
another debug cable, there is effectively a large unterminated stub on the debug signals. This
can cause the debug interface to become unstable. To solve this problem, configure the
DSTREAM or RVI software to use the Mictor cable for both the debug and trace signals, and
disconnect any other debug cables.

3.9.4 See also

Tasks
• Configuring the network settings for a debug hardware unit on page 3-8
• Modifying the network settings for a debug hardware unit on page 3-10.

Concepts
• The Configure debug_hardware device dialog box on page 3-4
• Debug hardware unit network settings on page 3-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 3-13
ID121610 Non-Confidential

Chapter 4
Managing the firmware on your debug hardware unit

The following topics describe how to manage and update the software that is installed on the debug
hardware unit, using the RVI Update utility:
• About templates on page 4-2
• Viewing software version numbers on page 4-3
• Installing a firmware update or patch on page 4-4
• Upgrading an LVDS probe on page 4-7
• Restarting the debug hardware unit in RVI Update on page 4-8.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-1
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
4.1 About templates
The debug hardware unit stores templates for each supported device. These templates each
define how to communicate with the device, and the settings that you can configure for that
device.

4.1.1 See also

Tasks
• Viewing software version numbers on page 4-3
• Installing a firmware update or patch on page 4-4.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-2
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
4.2 Viewing software version numbers
To view software version numbers, select Version Info... from the RVI menu in the RVI Update
utility. The Version Info dialog box displays a window giving version information. An example
is shown in the following figure:

Figure 4-1 Version information

The text above the scrolling list shows the version number of the software release that is
installed, in the format:

This is release version number major.minor.patch

where:

major is the major release version number

minor is the minor release version number

patch is the patch level of the major.minor version.

The scrolling list shows the version number of each component of the installed software.

The Log... button enables you to save the version information to a file. To do this:

1. Click Log. The Select Log File Name dialog box is displayed.

2. Choose the location of the log file.

3. Click Save to save the log file.

4. Click OK to close the Version Info dialog box.

4.2.1 See also

Tasks
• Installing a firmware update or patch on page 4-4.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-3
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
4.3 Installing a firmware update or patch
ARM periodically releases updates and patches to the firmware that is installed on a debug
hardware unit. Each update or patch is released as a component file with the suffix .rvi for RVI,
and suffix .dstream for DSTREAM. These might extend the capabilities of your debug
hardware, or might fix an issue that has become apparent. You can obtain these files from the
ARM web site.

If you want to restore the firmware to its original state after installing an upgrade, you can
reinstall the original component file, obtainable from the ARM website. See the Getting Started
document for your ARM product for more information.

To install an update or patch to the firmware on a debug hardware unit:

1. In the RVI Update utility, click the Install Firmware tool. The Select Firmware Update
to Install dialog box is displayed. An example is shown in the following figure:

Figure 4-2 Selecting the component file to install

2. Navigate to the directory containing the component file for the update or patch that you
want to install, and select the required file.

3. Click Open. After a short delay, a dialog box appears that describes what is in the
component file, as shown in the following figure:

Figure 4-3 Confirming that you want to install the component file

When attempting to install an update file, if you are using an older version of RVI Update,
for example a pre-RVI v1.5 release, an error message appears as shown in the following
figure:
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-4
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
Figure 4-4 Error message

Note
 Before proceeding with your intended installation, you must upgrade your RVI Update

utility to the latest software.

Similarly, if you are using a version of hardware that is incompatible with the firmware
you are attempting to install, an error message similar to the one shown in the following
figure:

Figure 4-5 Error when using an incompatible version of hardware

4. In the Install update dialog box, click Continue to confirm that you want to install the
components, or Cancel to make no change to the debug hardware unit. The RVI Update
utility then uploads the component file to the debug hardware unit. The debug hardware
unit unpacks the component file, and installs the update or patch that it contains. The
progress of the installation is displayed as shown in the following figure:

Figure 4-6 Progress during an installation

The debug hardware unit might automatically reboot itself as part of this procedure,
depending on the patch or update that you are installing. The progress of the reboot is
displayed as shown in the following figure:
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-5
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
Figure 4-7 Progress when rebooting during an installation

During the installation process, the FLASH LED lights up, showing that the unit is
accessing its internal flash storage. During this time, do not disconnect power from the
debug hardware unit. If a problem occurs during the installation, you must troubleshoot
the firmware upgrade installation.

Note
 While an installation is taking place, the Abort button is enabled. This means that you can

safely stop the installation from proceeding by clicking this button. If the Abort button is
not enabled, for example during rebooting, you cannot stop the reboot.

When the installation is complete, a message is displayed as shown in the following
figure:

Figure 4-8 Message showing a successful installation

4.3.1 See also

Tasks
• Upgrading an LVDS probe on page 4-7.

Concepts
• Troubleshooting firmware upgrade installations on page 10-9.

Other information
• ARM web site, http://www.arm.com
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-6
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
4.4 Upgrading an LVDS probe
You can use the RVI Update utility to install an upgrade to your Low Voltage Differential
Signaling (LVDS) probe. This upgrade procedure is necessary only if you want to make use of
the Serial Wire Debug (SWD) feature. This is a once-only upgrade that is required if your LVDS
probe was released with RVI v3.0, because this type of probe is not SWD-capable.

To upgrade your LVDS probe:

1. In the RVI Update utility, select Upgrade LVDS Probe... from the RVI menu.

2. You are prompted to confirm your option to upgrade the probe. Select Yes, and the RVI
Update utility begins the update process, during which you are reminded not to disconnect
the probe, nor to power off your debug hardware unit, until the process is completed. This
is shown in the following figure:

Figure 4-9 Progress during probe update

Note
 To perform the upgrade you must have v3.1 firmware or later installed on your debug

hardware unit.
You must also have an LVDS probe that is at least at v2.
If you have a v1 probe (board number HPI-0090x), you must replace it with a later
version. If so, contact ARM for more information.

4.4.1 See also

Tasks
• Installing a firmware update or patch on page 4-4.

Concepts
• Troubleshooting firmware upgrade installations on page 10-9.

Reference

ARM® DSTREAM™ System and Interface Design Reference:
• Serial Wire Debug , ../com.arm.doc.dui0499b/BEHIADEG.html
ARM® RVI™ and RVT™ System and Interface Design Reference:
• Serial Wire Debug , ../com.arm.doc.dui0517b/yCHDBDBHI.html
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-7
ID121610 Non-Confidential

Managing the firmware on your debug hardware unit
4.5 Restarting the debug hardware unit in RVI Update
To restart the debug hardware unit, select Restart from the RVI menu. RVI Update reboots the
debug hardware unit, waits for the reboot to finish, then reconnects automatically. A message is
displayed telling you that debug hardware is rebooting.

4.5.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Connecting to a debug hardware unit on page 2-8
• Installing a firmware update or patch on page 4-4
• Upgrading an LVDS probe on page 4-7.

Concepts
• Chapter 10 Troubleshooting your debug hardware unit
• Viewing software version numbers on page 4-3.

Reference
• Chapter 3 Configuring network settings for your debug hardware unit.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 4-8
ID121610 Non-Confidential

Chapter 5
Creating debug hardware target configurations

The following topics describe how to create a debug hardware configuration file with the RVConfig
utility for use by your debugger:

• About creating debug hardware target configurations on page 5-3

• Creating a debug hardware configuration file on page 5-4

• Opening an existing debug hardware configuration file in RVConfig on page 5-6

• Configuring a JTAG scan chain on page 5-7

• About configuring a device list on page 5-9

• Autoconfiguring a scan chain on page 5-11

• Adding devices to the scan chain on page 5-12

• Removing devices from the scan chain on page 5-16

• Changing the order of devices on the scan chain on page 5-17

• Select Platform dialog box on page 5-18

• Export As Platform dialog box on page 5-19

• Exporting a configuration to a platform file on page 5-20

• Device Properties dialog box on page 5-21

• Setting the clock speed on page 5-24

• About adaptive clocking on page 5-25
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-1
ID121610 Non-Confidential

Creating debug hardware target configurations
• Device configuration settings on page 5-26

• Debug hardware Advanced settings on page 5-33

• Trace configuration settings on page 5-36

• Configuring Reset options in debug hardware on page 5-37

• Configuring SecurCore behavior if the processor clock stops when stepping instructions
on page 5-38

• Configuring TrustZone enabled processor behavior when debug privileges are reduced on
page 5-39

• About platform detection and selection on page 5-40

• Autodetecting a platform on page 5-41

• Manually selecting a platform on page 5-43

• Clearing a platform assignment from a debug hardware configuration on page 5-44

• Adding new platforms on page 5-45

• Adding autoconfigure support for new platforms on page 5-46

• Configuring the debug hardware Advanced settings on page 5-47

• Saving your changes on page 5-49

• Disconnecting from a debug hardware unit on page 5-50

• Configuring a target processor for virtual Ethernet on page 5-51

• CoreSight device names and classes on page 5-52.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-2
ID121610 Non-Confidential

Creating debug hardware target configurations
5.1 About creating debug hardware target configurations
A debug hardware target configuration enables your debugger to:
• connect to the target devices on your development platform
• debug applications on your development platform.

You save your debug hardware target configuration in a configuration file. You reference this
configuration file when you create target connections in your debugger.

CoreSight systems can contain many trace sources and sinks. To allow your debugger to capture
trace correctly from a system, and to associate the trace information with the source that
generated it, you must set up CoreSight associations for your debug hardware configuration.

5.1.1 See also

Tasks
• Creating a debug hardware configuration file on page 5-4
• Chapter 6 Configuring CoreSight systems.

Concepts
• About CoreSight system configuration on page 6-2
• About trace associations on page 6-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-3
ID121610 Non-Confidential

Creating debug hardware target configurations
5.2 Creating a debug hardware configuration file
To create a debug hardware configuration file:

1. Start the RVConfig utility. An example is shown in the following figure:

Figure 5-1 RVConfig utility

2. Connect to a debug hardware unit.

3. Click Auto Configure to identify the target devices on your development platform.

4. If a platform configuration exists for your development platform, you are prompted to
select that platform configuration.
Click OK to use the platform configuration. Otherwise, click Cancel.

5. Configure the following as required:
• device configuration settings
• debug hardware Advanced settings
• device properties, if appropriate
• Trace configuration settings (DSTREAM and RVT2 only)
• Trace Associations if you are configuring a CoreSight development platform.

6. Select Save from the File menu to save your configuration. The Choose a filename to save
as dialog box is displayed.

7. Locate a directory to save your configuration file and enter an appropriate filename. For
example CoreSight_A8.rvc for a CoreSight system containing a Cortex-A8 processor.

8. Click Save to save the file.

9. Select Exit from the File menu to close the RVConfig utility.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-4
ID121610 Non-Confidential

Creating debug hardware target configurations
5.2.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Connecting to a debug hardware unit on page 2-8
• Configuring a JTAG scan chain on page 5-7
• Changing the properties of a device on page 5-23
• Setting up a CoreSight trace association file on page 6-11
• Configuring the debug hardware Advanced settings on page 5-47
• Defining CoreSight trace associations on page 6-7.

Concepts
• About configuring a device list on page 5-9
• CoreSight autodetection on page 6-4
• About adaptive clocking on page 5-25
• About CoreSight system configuration on page 6-2
• CoreSight autodetection on page 6-4
• About platform detection and selection on page 5-40
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Select Platform dialog box on page 5-18
• Device Properties dialog box on page 5-21
• Trace Association Editor dialog box on page 6-9
• Device configuration settings on page 5-26
• Debug hardware Advanced settings on page 5-33
• Trace configuration settings on page 5-36
• Trace Association Editor dialog box on page 6-9
• About trace associations on page 6-6
• Format of trace associations on page 6-8
• Chapter 10 Troubleshooting your debug hardware unit.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-5
ID121610 Non-Confidential

Creating debug hardware target configurations
5.3 Opening an existing debug hardware configuration file in RVConfig
To open a debug hardware configuration file, .rvc, in RVConfig:

1. Select Open from the File menu, and the Choose a file to open dialog box appears.

2. Locate the directory continuing your .rvc configuration files.

3. Select the appropriate .rvc file.

4. Click Open. The scan chain configuration is displayed, as shown in the following figure:

Figure 5-2 The scan chain controls

The title of the utility includes the full path to the configuration file. The path name might
be different to that shown.

5. Modify your configuration as required.

5.3.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3.

Concepts
• About creating debug hardware target configurations on page 5-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-6
ID121610 Non-Confidential

Creating debug hardware target configurations
5.4 Configuring a JTAG scan chain
Use the scan chain controls to configure a scan chain for the currently connected debug
hardware unit:

Figure 5-3 Scan chain controls

As you add devices to the JTAG scan chain, a schematic diagram of the scan chain is created,
as shown in the following example:

Figure 5-4 Scan chain schematic diagram

If a platform configuration file exists for your target, the Select Platform dialog box is displayed.
If you want to use the platform configuration file:

1. Select the platform.

2. Click OK. A label identifying the platform is included at the top of the schematic diagram.

5.4.1 Managing devices

The following buttons enable you to manage the devices in your configuration:

• Click Add... to add a device to the scan chain.

• When a device is selected in the schematic diagram:
— click Remove to remove the selected device
— click Properties... to update the properties for the selected device
— click Configure to display the Device configuration settings

• For a scan chain containing multiple devices, click:
— Move Left to move the selected device to the left
— Move Right to move the selected device to the right.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-7
ID121610 Non-Confidential

Creating debug hardware target configurations
5.4.2 Device context menu controls

To display the device context menu, right-click on a device in the scan chain schematic. The
following options are available for all devices:
• Select Properties... to change the properties of the device.
• Select Configuration... to configure the device.
• Select Remove Device to remove the chosen device.

For a CoreSight system, the Read CoreSight ROM table option is available for the
ARMCS-DP device. This enables your debug hardware to read the CoreSight ROM table.

5.4.3 Managing a platform file

To manage a platform file for your development board:

If a platform file exists, click Select Platform... to choose a platform that corresponds to your
development board.

When a platform is assigned to your configuration, the Select Platform ... button changes to
Clear Platform. Click Clear Platform to remove the platform assignment from your
configuration.

5.4.4 Managing trace associations

If you are configuring a CoreSight system, click the Trace Associations ... to manage the
CoreSight trace associations.

5.4.5 See also

Tasks
• Connecting to a debug hardware unit on page 2-8
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Changing the properties of a device on page 5-23
• Setting the clock speed on page 5-24
• Setting up a CoreSight trace association file on page 6-11.

Concepts
• About configuring a device list on page 5-9.

Reference
• Select Platform dialog box on page 5-18
• Device Properties dialog box on page 5-21
• Trace Association Editor dialog box on page 6-9
• Device configuration settings on page 5-26.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-8
ID121610 Non-Confidential

Creating debug hardware target configurations
5.5 About configuring a device list
You can configure a device list using the following methods:
• autoconfiguration
• manual configuration.

5.5.1 Autoconfiguration

Autoconfiguring a system identifies the target devices on your development platform by reading
appropriate Serial Wire Debug (SWD) registers. The value of this register is usually set by the
engineers that integrate the devices into a design. It is not set within the ARM devices
themselves. For more information, see the ARM datasheet or technical reference manual for the
processor that you are integrating.

Warning
 Auto-configuring can be intrusive and stop your development platform from operating
normally. If you want to connect to a target on your development platform without performing
a reset and stop, you must manually add the devices to the scan chain.

When autoconfiguring a device list, debug hardware interrogates the scan chain and
automatically selects the correct templates for supported ARM target devices, then adds them
to the scan chain in the correct order. This takes place at the current clock speed:

• If you are using a fixed clock speed, but debug hardware detects one or more devices that
require adaptive clocking, it automatically selects adaptive clocking.

• If you are using adaptive clocking, but debug hardware does not detect any devices that
support adaptive clocking, an error message is generated. Select a fixed clock speed.

• If the clock speed is too high, some devices on the scan chain might not be detected. If
you suspect that this is happening, decrease the clock speed.

Note
 Autoconfiguration is disabled in RVConfig if the current debug hardware configuration has a
platform assigned to it.

5.5.2 Manual configuration

You can add devices manually to a scan chain. You must do this if your development platform
includes:

• Unsupported devices. That is, devices for which no templates are provided by the debug
hardware unit.

• Supported devices that are not detectable by the debug hardware unit.

5.5.3 CoreSight development platforms

If your development platform contains CoreSight devices, then autoconfiguration involves:

1. Adding the ARM CoreSight Debug Port (ARMCS-DP) device.

2. Reading the CoreSight ROM Table. This table contains a list of the CoreSight devices
included in your development platform.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-9
ID121610 Non-Confidential

Creating debug hardware target configurations
5.5.4 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Device Properties dialog box on page 5-21
• Setting the clock speed on page 5-24
• Configuring a JTAG scan chain on page 5-7
• CoreSight autodetection on page 6-4.
ARM® DSTREAM™ Setting up the Hardware:
• Connecting the DSTREAM debug and trace unit,

../com.arm.doc.dui0481b/I1004916.html.
ARM® RVI™ and RVT™ Setting up the Hardware:
• Connecting the RVI debug unit, ../com.arm.doc.dui0515b/I1004916.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-10
ID121610 Non-Confidential

Creating debug hardware target configurations
5.6 Autoconfiguring a scan chain
To autoconfigure a scan chain:

1. Select the Devices node in the tree diagram.
If a scan chain configuration is already set up and has a platform assigned to it,
autoconfiguration is disabled in RVConfig. If you want to reconfigure the scan chain
automatically, click Clear Platform before continuing.

2. Click on Auto Configure. Each detected device is added to the scan chain configuration
list in the control pane, and is also added to the tree diagram. In many cases, this is all that
you have to do to configure the scan chain. You must then configure the devices
themselves.

3. If a scan chain configuration is already set up, the following Auto Configure Scan Chain
prompt might be displayed:

Figure 5-5 Auto Configure Scan Chain dialog box

Caution
 If you click OK, your current scan chain configuration is lost.

5.6.1 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Device Properties dialog box on page 5-21
• Setting the clock speed on page 5-24
• Device configuration settings on page 5-26
• Troubleshooting autoconfigation of a scan chain on page 10-11.

ARM® DSTREAM™ Setting up the Hardware:
• Connecting the DSTREAM debug and trace unit,

../com.arm.doc.dui0481b/I1004916.html.
ARM® RVI™ and RVT™ Setting up the Hardware:
• Connecting the RVI debug unit, ../com.arm.doc.dui0515b/I1004916.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-11
ID121610 Non-Confidential

Creating debug hardware target configurations
5.7 Adding devices to the scan chain
You can manually add devices to the scan chain, if required. You might want to do this in the
following circumstances:

• You do not want to reset and stop the targets on the development platform.

• The autoconfiguration fails.

• The Read ROM Table autoconfiguration phase for a CoreSight system fails to find any
devices.

• The device configuration on your development platform has changed since you created
this debug hardware configuration, and the platform contains unsupported devices.
For example, you might have added one or more devices to your development platform.
In this case, you might also have to change the order of the devices, if the order on the
development platform has changed.

To add a device to the scan chain:

1. Select the Devices node in the tree diagram.

2. Click on Add.... The Add Device dialog box is displayed. The following figure shows an
example:

Figure 5-6 The Add Device dialog box

The devices available depends on your firmware version.

Note
 Device groups shown in light gray indicates that the related devices are not available.

These are usually seen when you autoconfigure a CoreSight development platform.

3. If the device appears in the list of registered devices:
a. Select Registered Devices. A registered device is a one that the debug hardware

unit can identify and for which some level of debug support exists. That is, a
template exists for the device.

b. Expand the relevant device group.
c. Select the device that you want to add.
d. Click on Add. The device is added to the scan chain.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-12
ID121610 Non-Confidential

Creating debug hardware target configurations
Note
 You can also add a device to the scan chain by double-clicking the device.

e. If you have multiple devices, repeat steps 4b to 4d to add each registered device.
f. After you have added all your devices, continue at step 6.

4. You might want to add a device that is not identified by the debug hardware, because it is
a device your are currently developing. To do this:
a. Select Custom Device.
b. Enter the name of the device in the Device Name field. This is used as the name of

the device node in the tree view, and can have any value.
c. Enter the JTAG Instruction Register length (in bits) in the IR Length field.

Note
 If you enter an incorrect value for the IR length, any connections that you attempt

to make to the device result in failure.

d. Click on Add. The device is added to the scan chain.
e. If you have multiple devices, repeat steps 5b to 5d to add each custom device.

Note
 Be aware that you cannot debug a custom device. However, adding the custom device in

the correct order and with the correct length enables you to debug the supported devices
in the same scan chain.

5. When you have finished, click Close.

Note
 You can remove devices, or change their order in the scan chain, without first having to close
the Add Device dialog box.

The following figure shows a number of devices that have been added to the scan chain in a
hierarchical manner:
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-13
ID121610 Non-Confidential

Creating debug hardware target configurations
Figure 5-7 Scan chain devices with tooltip feature displayed

5.7.1 Considerations when adding devices to a scan chain

Be aware of the following:

• In a traditional JTAG configuration you must add devices in the correct order. The device
nearest to TDO is last on the chain.

Note
 If you add the devices in the wrong order, you can later change the order.

• In a CoreSight configuration, you must first add the ARMCS-DP device. You can then
add the remaining CoreSight devices in any order.

• Hierarchies are created automatically when a device is added as a CoreSight component,
and enables you to manage component interactions easily.

• The scan chain shows a unique association name for the device, if one exists, to help you
to identify the correct device when you are creating associations.

• When the cursor is placed over a device, a tooltip displays details relating to that device.

Note
 The Associations item in the tooltip only appears if an association has been set up for that

device.

5.7.2 See also

Tasks
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Device Properties dialog box on page 5-21
• Setting the clock speed on page 5-24
• Setting up a CoreSight trace association file on page 6-11.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-14
ID121610 Non-Confidential

Creating debug hardware target configurations
• Troubleshooting autoconfigation of a scan chain on page 10-11.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-15
ID121610 Non-Confidential

Creating debug hardware target configurations
5.8 Removing devices from the scan chain
To remove an unwanted device from the scan chain:

1. Select the Devices node in the tree diagram.

2. Select the device in the scan chain configuration.

3. Click Remove. If a device has a child component, a confirmation prompt is displayed.

Note
 If a scan chain configuration is already set up and has a platform assigned to it, you cannot
remove a device. If you want to remove a device from the scan chain:

1. Click Clear Platform.

2. Either:
• autoconfigure the scan chain again
• manually add only those devices you want to keep.

5.8.1 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Changing the order of devices on the scan chain on page 5-17
• Device Properties dialog box on page 5-21
• Setting the clock speed on page 5-24.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-16
ID121610 Non-Confidential

Creating debug hardware target configurations
5.9 Changing the order of devices on the scan chain
For a traditional JTAG configuration, the devices must be in added the correct order in relation
to debug hardware TDI and TDO. If you have added devices in the wrong order, then you can
change the order.

To change the order of devices on the scan chain:

1. Select the Devices node in the tree diagram.

2. In the scan chain schematic diagram, select the device you want to move.

3. Click:
• Move Left to move the device to the left
• Move Right to move the device to the right.

Note
 The ordering of CoreSight devices on the same Debug Access Port (DAP) is not important.

5.9.1 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Device Properties dialog box on page 5-21
• Setting the clock speed on page 5-24.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-17
ID121610 Non-Confidential

Creating debug hardware target configurations
5.10 Select Platform dialog box
The Select Platform dialog box enables you to select a platform configuration that is suitable for
your development platform. The following figure shows an example:

Figure 5-8 Select Platform dialog box

Click the OK button to select the chosen platform, in doing so the entire configuration for that
platform is loaded.

Click the Cancel button to cancel any selected action.

Select <None> to put the debug hardware unit into a known state if you have incorrectly loaded
a platform. This resets all settings to the default values.

5.10.1 See also

Reference
• About platform detection and selection on page 5-40
• Autodetecting a platform on page 5-41
• Manually selecting a platform on page 5-43
• Adding new platforms on page 5-45
• Adding autoconfigure support for new platforms on page 5-46.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-18
ID121610 Non-Confidential

Creating debug hardware target configurations
5.11 Export As Platform dialog box
The Export As Platform dialog box enables you to save the current configuration as a platform
configuration. The following figure shows an example:

Figure 5-9 Export As Platform dialog box

5.11.1 See also

Reference
• Exporting a configuration to a platform file on page 5-20
• About platform detection and selection on page 5-40
• Autodetecting a platform on page 5-41
• Manually selecting a platform on page 5-43
• Adding new platforms on page 5-45
• Adding autoconfigure support for new platforms on page 5-46.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-19
ID121610 Non-Confidential

Creating debug hardware target configurations
5.12 Exporting a configuration to a platform file
To export a configuration to a platform file:

1. Select Export platform file... from the File menu to display the Export As Platform
dialog box.

2. Specify a Board Name for the platform, for example Integrator_AP_ARM926EJ-S.

3. Specify a Manufacturer for the platform, for example ARM

4. Click OK to save the platform file and close the Export As Platform dialog box.
The platform file is stored in:
C:\Documents and Settings\username\My Documents\ARM\rvconfig\platformFiles

The name of the platform file has the format:
Manufacturer_BoardName.rvc

5. Select Save from the File menu to save the configuration.

5.12.1 See also

Reference
• Export As Platform dialog box on page 5-19
• About platform detection and selection on page 5-40
• Autodetecting a platform on page 5-41
• Manually selecting a platform on page 5-43
• Adding new platforms on page 5-45
• Adding autoconfigure support for new platforms on page 5-46.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-20
ID121610 Non-Confidential

Creating debug hardware target configurations
5.13 Device Properties dialog box
The Device Properties dialog box enables you to change the properties of any device in the scan
chain, if required. The following figure shows an example:

Figure 5-10 The Device Properties dialog box

You can:
• Select one or more options for the device. These options enable a debugger to determine

the features that are supported by a device. For example, a Registers view might show the
NEON registers when the NEON SIMD Extensions (Neon) option is selected.

• Set the template version for the device, if multiple versions are provided.

If no properties are available for a device, the following message is displayed in the Options list

No device options found in current template

5.13.1 Device properties

The device properties listed depends on the device being configured, and can be any of the
following:

Embedded Trace Macrocell (ETM)
Select this if you want to capture trace from the ETM.

Embedded Trace Buffer (ETB)
Select this if you want to capture trace from an ETB. You must also select
Embedded Trace Macrocell (ETM).

Vector Floating Point (VFP)
Select this to use VFP, if supported.

Vector Floating Point v3 (VFPv3)
Select this to use VFPv3, if supported.

Vector Floating Point v3-D16 (VFPv3-D16)
Select this to use VFPv3-D16, if supported.

NEON SIMD Extensions (Neon)
Select this to use NEON, if supported.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-21
ID121610 Non-Confidential

Creating debug hardware target configurations
5.13.2 See also

Tasks
• Changing the properties of a device on page 5-23.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-22
ID121610 Non-Confidential

Creating debug hardware target configurations
5.14 Changing the properties of a device
You can change the properties of any device in the scan chain, if required. The properties
available depend on the device you are configuring. For example, if you want to capture trace
from an ETM, you must make sure the Embedded Trace Macrocell (ETM) option is selected.

To change the properties of a device:

1. Select the Devices node in the tree diagram.

2. Select the device in the scan chain configuration list.

3. Click Properties... to display the Device Properties dialog box. The following figure
shows an example:

Figure 5-11 The Device Properties dialog box

Note
 It is not possible to use an ETB without an ETM, so when you select ETB, ETM is

selected automatically.

4. Select the options you require.
The options available depend on the device you are configuring.

5. Click OK.

5.14.1 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Setting the clock speed on page 5-24
• Chapter 4 Managing the firmware on your debug hardware unit.

Reference
• Device Properties dialog box on page 5-21.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-23
ID121610 Non-Confidential

Creating debug hardware target configurations
5.15 Setting the clock speed
It is important to select the best clock speed for your system. Higher clock speeds enable faster
downloads, but setting the clock speed too high can result in intermittent faults and reliability
problems. If you are experiencing such problems, try manually reducing the clock speed. If you
are not sure which clock speed to use, try setting the default speed, 10MHz.

Note
 For RVI, for reliable operation at high clock speeds you must use the Low Voltage Differential
Signaling (LVDS) cable.

5.15.1 Predefined clock speed

To select a predefined clock speed:

1. Select the Devices node in the tree diagram.

2. Select the clocking that you want to use from the Clock Speed drop-down list. The
following figure shows an example:

Figure 5-12 The scan chain speed controls

Note
 Although the debug hardware can support JTAG clock speeds down to 13Hz, your

debugging environment might become unstable at speeds lower than 1kHz.

5.15.2 Custom clock speed

If the clock speed you want to use is not available as a preset value, enter the required clock
speed in the Clock Speed field with the Hz, kHz, or MHz suffix as required. For example, 40.0
kHz.

5.15.3 See also

Tasks
• Adding devices to the scan chain on page 5-12
• Removing devices from the scan chain on page 5-16
• Changing the order of devices on the scan chain on page 5-17
• Device Properties dialog box on page 5-21.

Reference
ARM® DSTREAM™ System and Interface Design Reference:
• DSTREAM System Design Guidelines, ../com.arm.doc.dui0499b/Chdbdcid.html.
ARM® RVI™ and RVT™ System and Interface Design Reference:
• RVI and RVT System Design Guidelines, ../com.arm.doc.dui0517b/Chdbdcid.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-24
ID121610 Non-Confidential

Creating debug hardware target configurations
5.16 About adaptive clocking
Adaptive clocking enables your debug hardware unit to dynamically adjust the JTAG clock
(TCK) following changes to the processor clock (CLK). This is useful when debugging system
with low power modes and changing clocks in general.

Adaptive clocking is intended only for targets that are based on a synthesizable ARM® processor
implementing RTCK. When a fixed JTAG clock is used, the JTAG clock must be running at
most 1/6 of the processor clock. Using a fixed JTAG clock does not support changes in the
processor clock speed, which can corrupt the JTAG connection.

If you use adaptive clocking, the maximum clock frequency is lower than with non-adaptive
clocking, because of transmission delays, gate delays, and synchronization requirements.

5.16.1 See also

Reference

ARM® DSTREAM™ System and Interface Design Reference:
• DSTREAM System Design Guidelines, ../com.arm.doc.dui0499b/Chdbdcid.html.
ARM® RVI™ and RVT™ System and Interface Design Reference:
• RVI and RVT System Design Guidelines, ../com.arm.doc.dui0517b/Chdbdcid.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-25
ID121610 Non-Confidential

Creating debug hardware target configurations
5.17 Device configuration settings
You can configure settings that are specific to a target device on your development platform.
The settings available depend on whether the device is a processor or a non-processor CoreSight
device.

5.17.1 Processor device settings

Depending on the processor that you have selected, a selection of the following controls is
available:

Allow execution with T-Bit Clear
The Cortex-M series processors can only execute Thumb2 code. However, their
xPSR contains a bit to configure ARM/Thumb state, that is initialized from the
reset vector. This enables you to test the exception handler associated with this
exception type.

Bypass memory protection when in debug
This option enables the bypass of any memory protection provided by hardware
(such as a memory management or protection unit) whenever the target hardware
enters debug state. This means that you can access protected memory to set
software breakpoints in it, or to alter its contents.

Clear breakpoint hardware on connect
This control is available if you are using the ARM11 family of processors. The
debug logic of an ARM11 processor is not reset when a Test Access Port (TAP)
reset is applied. Set this option to True to instruct the debug hardware unit to
perform reset the debug logic each time you connect.

Code Sequence settings
Most systems store variables and the stack and heap in RAM. However, in some
systems only Flash or ROM is mapped in memory at power-up and RAM must
be enabled by software in the boot code.
To perform certain operations with some targets, the debug hardware unit must
download a piece of code into memory and make the processor execute it. This
code must be located in a writable area of memory (RAM) and must be accessed
only by the JTAG tool.
You can set the address and size of this code using the Code Sequence Address
and the Code Sequence Size (bytes) settings.
When you connect with a debugger to one of these targets, make sure that RAM
is mapped in memory and that the cache clean code or code sequence address is
mapped correctly. You can run a script from the command line to configure the
target memory map straight after connecting to the target.
This area of memory must be:
• unused by the target
• readable
• writable
• non-cacheable (for cached targets)
• at least 128 bytes in size.
The debug software downloads code sequences to this area to perform various
tasks, such as cleaning the cache and accessing certain system registers on targets
such as ARM920T™ and ARM1136JF-S. It does not preserve the contents of this
area.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-26
ID121610 Non-Confidential

Creating debug hardware target configurations
Note
 You must ensure that the Code Sequence Address and the Code Sequence Size

(bytes) values are correctly set up before you attempt to write to any of the Cache
Operations or TLB Operations in the your debugger Registers view. If you do not
set these values correctly, your debugger gives one or more of the following
errors:
• Error V28305 (Vehicle): Memory operation failed

• Warning: Code sequence memory area size error

• Unable to load code sequence into defined memory area.

The Code Sequence Timeout (ms) value sets a timeout for execution of the
uploaded code sequence. For most targets, a 500ms timeout is sufficient.
The Use code sequence to clean cache option enables you to configure how the
caches are cleaned if you are using ARM 920T or ARM922T processors. Set this
option when using the debugger to access IO memory, for example peripheral
control registers for Universal Asynchronous Receiver/Transmitters (UARTs),
when caches are enabled.

CoreSight AP index
The AP index of the corresponding device.
Available only for processors that are part of a CoreSight system.

CoreSight base address
The base address of the CoreSight registers for the processor on the Advanced
High-performance Bus (AHB) or Advanced Peripheral Bus (APB).
Available only for processors that are part of a CoreSight system.

Debug acceleration level
This controls the level of acceleration used in debug operations.
Select one of the following options:
0 - Full This is the default. It enables full use of the performance features of

RVI and the target processor.
1 - Partial

This results in a lower performance than for the Full option.
2 - None Select the None option to use only basic operations. This results in the

lowest performance available.

Note
 In most instances, select the Full option unless advised otherwise by an ARM

support engineer.

Default Gateway
Default gateway for the target when using virtual Ethernet. Used with the IP
Address and Network Mask settings to enable access to your target from the
network.

Fast Memory Download
This configuration item is available only for processors connected to a JTAG-AP
port. Set this to False if you experience problems using fast memory downloads.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-27
ID121610 Non-Confidential

Creating debug hardware target configurations
Ignore bad JTAG IDCODE
By default, debug hardware reads the device JTAG IDCODE to verify the
integrity of the JTAG connection. The JTAG standard restricts the JTAG
IDCODE value to be 32 bits long and requires the least significant bit to be a 1.
If debug hardware reads an invalid (bad) JTAG IDCODE, it assumes that the
JTAG connection is not functioning properly, and fails the attempt to connect to
the processor.
You must set the Ignore bad JTAG IDCODE option according to whether you
want to instruct debug hardware to enable connection to the processor even if it
detects that the JTAG IDCODE is invalid.

Ignore debug privilege errors when starting core
When the SPIDEN line is changed from HIGH to LOW, the following errors
might be seen:
• Insufficient debug privilege to restore core state for restart.

• Insufficient debug privilege to write software breakpoint to memory.

• Set Ignore debug privilege errors when starting core to suppress these

errors.

If set to True, debug hardware starts the processor running even though the
breakpoints/processor state is incorrect.
If set to False (the default), debug hardware refuses to start the processor and
reports the errors.

IP Address IP address of the target when using virtual Ethernet. Used with the Default
Gateway and Network Mask settings to enable access to your target from the
network.

JTAG timeouts enabled
JTAG timeouts are enabled by default. You must disable these when debug
hardware is connected to a processor using a low clock speed and adaptive
clocking, because debug hardware cannot detect the clock speed when adaptive
clocking is used, so cannot scale its internal timeouts. If a JTAG timeout occurs,
the JTAG is left in an unknown state, and debug hardware cannot operate
correctly without reconnecting to the processor.

Network Mask
Net Mask of the target when using virtual Ethernet. Used with the IP Address and
Default Gateway settings to enable access to your target from the network.

No error if step-instr can't stop.
Controls generation of error messages if a debugger step instruction operation
fails because a timeout attempts to stop the SecurCore processor after a step is
complete. This can occur on the SecurCore if an instruction execution results in
the processor clock being disabled using CLKEN. The processor appears to be in
a running state.
If set to True (the default), then no error message appears if an instruction step
results in the processor running.
If set to False, then an error dialog box is displayed in your debugger.

Post Reset State
Set to the required state for the target hardware:
Running The target hardware is running.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-28
ID121610 Non-Confidential

Creating debug hardware target configurations
Stopped Controls the state of a processor after a reset. It is only available for
devices that are capable of running (such as ARM processors). Each
device on the scan chain does not have to be set to the same value, so
it is valid to have one processor running and another stopped.

Note
 If you want to connect to a running target without performing a reset and without

stopping the target, you must do both of the following:
• In debug hardware, set the Post Reset State to Running.
• In your debugger, connect using the No Reset/No Stop connection mode.

Soft TAP reset on JTAG sync loss
In some situations, such as a processor entering low power mode, the
synchronization between the debug unit and the TAP controller in the JTAG
system can be lost. This can result in invalid values for the debug status register
being read. To regain the synchronization, a soft TAP reset must be performed to
get the TAP controller into a known state.
If Soft TAP reset on JTAG sync loss is checked, a soft TAP reset is performed to
get the TAP controller into a known state if the debug unit reads invalid values for
the debug status register.

Software breakpoint mode
If supported by your processors, this control enables you to configure how the
debug hardware unit handles software breakpoints. Select the required breakpoint
mode:
AUTO This is the default mode for all templates:

• If the processor being debugged supports BKPT instructions,
debug hardware automatically uses the BKPT instruction for
software breakpoints.

• Only one watchpoint resource is used for multiple software
breakpoints. Therefore, if the processor being debugged does not
support BKPT instructions, debug hardware uses the watchpoint
unit resource when you set a software breakpoint. The debug
hardware unit automatically frees the watchpoint unit resource
when all software breakpoints are cleared.

NONE When this mode is selected, you cannot set software breakpoints. If
you attempt to set a software breakpoint, debug hardware gives an
error message telling you that there are no free resources to set the
breakpoint.

WATCHPOINT
This mode instructs debug hardware to use one watchpoint unit to
provide software breakpoint instructions, whether or not the processor
being debugged supports BKPT instructions. Select this option if the
processor supports BKPT instructions but you want to use a watchpoint
unit.

BKPT This mode instructs debug hardware to use the BKPT instruction to
provide software breakpoint instructions, whether or not the processor
supports this instruction. Select this option if you want to make sure
that no watchpoints are used.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-29
ID121610 Non-Confidential

Creating debug hardware target configurations
Unwind vector when halt on vector catch
This control is available if you are using an ARM10 processor. It instructs the
debug unit to unwind the vector if you have set a vector catch on a SWI, an
Undefined instruction, a Prefetch Abort or a Data abort. Unwinding the vector
sets the PC to the address of the code that caused the exception instead of leaving
it at the vector address. The LR and CPSR are restored, and debugger displays the
code at this address. This enables you to more easily examine the code that caused
the exception. If you want to run the exception handling code, you must leave this
option unchecked.

Note
 This option is only activated if a vector catch occurs. If a vector catch is not set,

then the exception handler is run as normal.

Unwind vector when halt on SWI
This control is available if you are using the following:
• a Cortex-A8 or Cortex-R4 processor
• ARM1136JFS-JTAG-AP, ARM1156T2FS-JTAG-AP, or

ARM1176JZF-JTAG-AP device.
It instructs debug hardware to unwind the Supervisor Call (SVC) vector if you
have set a vector catch on an SVC. Unwinding the vector sets the PC to the
address of the code that caused the exception instead of leaving it at the vector
address. The LR and CPSR are restored, and your debugger displays the code at
this address. This enables you to more easily examine the code that caused the
exception. If you want to run the exception handling code, you must leave this
option unchecked.

Note
 This option is only activated if an SVC vector catch occurs. If an SVC vector

catch is not set, then the exception handler is run as normal.

Use LDM or STM for memory access
This options controls whether or not to use Load Multiple Instructions (LDM) or
Store Multiple Instructions (STM) to access target memory. You might need to set
this option if you have a peripheral that is not fully compatible with the AMBA
2.0 standard, as in such cases LDM and STM might not be compatible.

Write-Through L2 Cache when in debug
This option is available if you are using an ARM11 processor.
Use this option with platforms that have a level 2 cache that interferes with debug
operations. By default it is set to False, but the platform configuration files
supplied for affected platforms set it to True.

Note
 If you set this option for other platforms, unexpected behavior might result, and

cause errors.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-30
ID121610 Non-Confidential

Creating debug hardware target configurations
5.17.2 Non-processor CoreSight device settings

For non-processor CoreSight devices, the following device configuration settings are available:

ARM11xx-JTAG-AP specific settings
The ARM1136JFS-JTAG-AP, ARM1156T2FS-JTAG-AP, and
ARM1176JZF-JTAG-AP devices have the following CoreSight-specific
controls:
JTAG-AP Port index for core

For CoreSight systems with processors connected to JTAG-AP, the
port index on the JTAG-AP to which the processor is connected.

Pre-scan IR bits for Devices after the core on the JTAG-AP scanchain
The total length of the JTAG instruction registers (IRs) for devices
appearing after the debugged target processor on the scan chain.
For example, if there are three devices after the processor with IR
lengths of 5, 7, and 11, then set this to 23.

Post-scan IR bits for Devices before the core on the JTAG-AP scanchain
The total length of the JTAG instruction registers (IRs) for devices
appearing before the debugged target processor on the scan chain.
For example, if there are two devices before the processor with IR
lengths of 2 and 3, then set this value to 5.

Pre-scan DR bits for Devices after the core on the JTAG-AP scanchain
The total number of devices appearing after the debugged target
processor on the scan chain.
For example, if there are three devices after the processor, then set this
value to 3.

Post-scan DR bits for Devices before the core on the JTAG-AP scanchain
The total number of devices appearing before the debugged target
processor on the scan chain.
For example, if there are two devices before the processor, then set this
value to 2.

Fast memory download.
This control is available for those targets where the Debug Access Port
(DAP) and the processor are running sufficiently fast enough to handle
the data being sent to them by the debug unit. The debug unit does not
have to check that each individual transaction with the DAP is
successful.
Because the processor is behind the DAP, all processor accesses have
to go through the DAP. As a guide, do not set this for FPGA-based
targets, but only for real silicon.
If this option is set, then error checking is disabled and the user is not
informed of any errors that occur. If problems are encountered when
downloading images then uncheck this option to resolve them.

CoreSight AP index
The AP index of the device.
Available for all devices, except the ARMCS-DP, ARMJTAG-DP, and
ARMSW-DP devices.

CoreSight base address
The base address of the CoreSight registers for the device on the AHB or APB.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-31
ID121610 Non-Confidential

Creating debug hardware target configurations
Available for all devices, except the ARMCS-DP, ARMJTAG-DP, and
ARMSW-DP devices.

Force ETM power up on connect
If the CoreSight ETM (CSETM) is powered down when your debugger attempts
to connection to it, then power up the device.

Memory Access AP index
The index number of the AHB-AP memory bus on the DAP. The AHB-AP bus is
used to perform memory operations within the CoreSight system.
Available for the ARMCS-DP, ARMJTAG-DP, and ARMSW-DP devices only.

The ARMCS-DP device represents the Debug Access Port (DAP) in a CoreSight system. This
device is automatically detected when you autoconfigure a CoreSight system. However, any
devices connected to the DAP are not detected. Therefore, you must read the CoreSight ROM
table of the ARMCS-DP to determine the devices that are connected to the DAP.

The ARM11xx-JTAG-AP device represents the JTAG-AP in a CoreSight system. To debug
CoreSight systems that have processors connected to the DAP the JTAG-AP, the debug unit
must know the pre-scan and post-scan bits for JTAG operations.

Multiple devices on the JTAG scan chain are connected in series, with data flowing serially from
TDI to TDO. This means that debugging a given target in the chain requires that certain pre-scan
and post-scan bits are used. These bits ensure that the other devices are not affected by the data
directed at the target device, and that the data is positioned correctly in the serial scan for the
target device.

5.17.3 See also

Tasks
• Configuring CoreSight processors on page 6-22
• Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems on page 6-23
• Configuring a target processor for virtual Ethernet on page 5-51.

Concepts
• Strategies used by debug hardware to debug cached processors on page 8-15.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-32
ID121610 Non-Confidential

Creating debug hardware target configurations
5.18 Debug hardware Advanced settings
Depending on your development platform configuration, a selection of the following controls is
available in the Advanced settings:

Allow ICE to perform TAP reset
Set this item to True to allow your debug hardware unit to hold the nSRST line
active long enough to perform any post-reset setup that might be required after a
target-initiated reset. This can extend the time that the target is held in reset. If this
item is set to False, your debug hardware unit does not assert the reset line, but
post-reset setup might not be complete before the target starts to run.

Allow ICE to latch System Reset
Set this item to True to allow your debug hardware unit to perform nTRST reset
while holding nSRST. This ensures that the Test Access Port (TAP) state machine
and associated debug logic is properly reset.

LVDS Debug Interface mode
This can be set either to JTAG or SWD. If set to SWD, this causes RVI to connect
to the target using the SWD protocol instead of JTAG.

nSRST High mode
Selects the drive strength used when the reset signal is in the high, or inactive,
state. Output can be driven as a strong or weak high, or not driven (tri-state).

nTRST High mode
Selects the drive strength used when the reset signal is in the high, or inactive,
state. Output can be driven as a strong or weak high, or not driven (tri-state).

nSRST Low mode
Selects the drive strength used when the reset signal is in the low, or active, state.
Output can be driven as a strong or weak low, or not driven (tri-state).

nTRST Low mode
Selects the drive strength used when the reset signal is in the low, or active, state.
Output can be driven as a strong or weak low, or not driven (tri-state).

nSRST Hold Time (ms)
Specifies how long the debug hardware unit holds the hardware nSRST system
reset signal LOW.

nTRST Hold Time (ms)
Specifies how long the debug hardware unit holds the nTRST TAP reset signal
LOW.

nSRST Post Reset Delay (ms)
Specifies how long after the hardware nSRST system reset before the debug
hardware unit enters the Post Reset State.

nTRST Post Reset Delay (ms)
Specifies how long after the nTRST TAP reset before the debug hardware unit
enters the Post Reset State.

Perform TAP reset on first connect
Resets the target hardware whenever you connect.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-33
ID121610 Non-Confidential

Creating debug hardware target configurations
Perform SYS reset on first connect
Resets the target hardware by asserting the nSRST signal when connecting to the
first device in a debug session.

Reset Type One of the following:
nSRST Resets the hardware by holding the hardware nSRST

system reset signal LOW. This is the default.
nTRST Resets the target TAP by holding the nTRST TAP reset

signal LOW.
nSRST+nTRST Resets the hardware and the target TAP by holding both the

hardware nSRST system reset signal and the nTRST TAP
reset signal LOW.

Fake Resets the system by entering supervisor mode, and setting
the program counter to the address of the reset vector
(known as a soft reset).

Ctrl_Reg The Control register. This reset, in instances where
processors have a reset register, enables you to reset the
processor without using the external reset lines. If you set
the reset type to Ctrl_Reg, then this control register is used.

SWO Mode Set to Manchester or UART, depending on the target mode.
If the SWO Mode is set to UART, the debug hardware unit is able to detect the
SWO UART Baud rate.
This setting has no effect in Manchester mode.

SWO UART Baud rate
For the frequency of the incoming data. If you set this to 0, the system attempts
to autodetect the baud rate.

Note
 UART mode in the SWO context also means Non Return to Zero (NRZ) mode.

TAP Reset via State Transitions
If you want the JTAG logic in the target hardware to be reset by forcing transitions
within its state machine. This is done in addition to holding the nTRST TAP reset
signal LOW. Select this option if nTRST is not connected, or if the target
hardware requires that you force a reset of the JTAG logic whenever resetting.

Target nSRST + nTRST linked
If the target hardware has its nSRST and nTRST JTAG signals linked.

Use SWJ Switching
If this is set, it causes the SWJ switching sequence to be sent before connecting
to the target device. On devices that support SWJ switching, this causes the DAP
to switch its interface to the selected protocol.

Use deprecated SWJ Sequence
If this is set, it causes your debug hardware unit to use an alternative SWJ
switching sequence, used on some older SWD-compatible targets. This option is
normally clear, unless the processor requires the deprecated sequence.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-34
ID121610 Non-Confidential

Creating debug hardware target configurations
Note
 For RVI, the LVDS Debug Interface mode, Use SWJ Switching, and Use

deprecated SWJ Sequence controls are not present in the control pane if you are
not using a Low Voltage Differential Signaling (LVDS) probe.

User Outputn
Used to set the state of the USER IO pins on the rear of the RVI unit, or on the
front of the DSTREAM unit.

5.18.1 See also

Tasks
• Configuring the debug hardware Advanced settings on page 5-47.
• Debugging with a reset register on page 8-20.

Reference
ARM® DSTREAM™ System and Interface Design Reference:
• DSTREAM reset signals, ../com.arm.doc.dui0499b/CCHDEDGG.html.
ARM® RVI™ and RVT™ System and Interface Design Reference:
• RVI reset signals, ../com.arm.doc.dui0517b/CHDDDFEJ.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-35
ID121610 Non-Confidential

Creating debug hardware target configurations
5.19 Trace configuration settings
The Trace configuration settings enable you to configure delays on the trace lines:

Delay Trace Clock, Delay Trace Signal N
Delay line N by a specified amount of time, expressed in intervals of 75
picosecond. Default delays are configured into the unit, and you are able to delay
each signal by a specified amount relative to these defaults, to allow for variations
in target hardware.

Invert Trace Clock
Invert the clock so that data is sampled on the falling edge, rather than on the
rising edge, of the clock.

5.19.1 See also

Tasks
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4
• Configuring your debugger for trace capture on page 7-6.

Concepts
• About using trace hardware on page 7-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-36
ID121610 Non-Confidential

Creating debug hardware target configurations
5.20 Configuring Reset options in debug hardware
The following Advanced configuration settings are available when configuring reset options in
debug hardware:

Allow ICE to latch System Reset (AllowICELatchSysRst)
When enabled, this option enables the debug hardware unit to extend the time the
target controller holds the target in reset. This enables the debug hardware unit to
apply breakpoint settings before the processor starts execution. This is useful for
debugging a target from reset, and allows the unit to stop the processor on the first
instruction fetch after reset has been released by the unit.
When this option is disabled, the breakpoint settings might only take effect after
the processor has already started execution, preventing debugging of the
application reset handler.
The default setting is True.

Allow ICE to perform TAP Reset (AllowICETAPReset)
A Test Access Port (TAP) reset on early processors, such as the ARM7TDMI, also
reset the debug registers associated with the JTAG device.
Later processor, such as the ARM1176, are not affected by a TAP reset. The main
purpose of a TAP reset is to reset the JTAG state machine in the TAP controller
receiving commands from the debug hardware unit.
The default setting is True.

5.20.1 See also

Concepts
• Configuring SecurCore behavior if the processor clock stops when stepping instructions

on page 5-38
• Configuring TrustZone enabled processor behavior when debug privileges are reduced on

page 5-39.

Reference
• Debug hardware Advanced settings on page 5-33.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-37
ID121610 Non-Confidential

Creating debug hardware target configurations
5.21 Configuring SecurCore behavior if the processor clock stops when stepping
instructions

If a step instruction operation fails, you must consider the configuration setting No error if
step-instr can’t stop (NO_ERROR_ON_STEPRUN).

This configuration item controls the generation of error messages if a step instruction (stepi)
operation fails because of a timeout attempting to stop the processor after a step is complete.
This can occur on the SecurCore if an instruction execution results in the processor clock being
disabled through CLKEN. The processor appears to be in a running state. If you use the default
setting of True, no error appears if an instruction step results in the processor running. If you set
the item to False, an error dialog appears in your debugger.

5.21.1 See also

Concepts
• Configuring Reset options in debug hardware on page 5-37
• Configuring TrustZone enabled processor behavior when debug privileges are reduced on

page 5-39.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-38
ID121610 Non-Confidential

Creating debug hardware target configurations
5.22 Configuring TrustZone enabled processor behavior when debug privileges are
reduced

The target does not allow invasive debug, that is when the processor enters debug state, while
the execution environment is in the Secure World. Any attempt to do so might result in the
following errors:
• Insufficient debug privilege to restore processor state for restart.
• Insufficient debug privilege to write software breakpoint to memory.

To suppress these errors, set the Ignore debug privilege errors when starting core
(IGNORE_START_DEBUG_PRIV_FAIL) configuration item.

This option is useful if you are trying to debug an application in Normal World, while the current
connection state of the target is in Secure World.

In this setup, the debug information and breakpoints are applied to the Normal World. However,
the initial connection still happens while the target is in Secure World. The debug hardware unit
has no control in this state, so debug control must be delayed until the target enters Normal
World. Until that time, any errors arising from debug operations must be silently ignored.

5.22.1 See also

Tasks
• Configuring Reset options in debug hardware on page 5-37
• Configuring SecurCore behavior if the processor clock stops when stepping instructions

on page 5-38.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-39
ID121610 Non-Confidential

Creating debug hardware target configurations
5.23 About platform detection and selection
Your debug hardware unit provides support for a number of development boards.

The following methods are available for platform detection and selection:
• Autodetection
• Manual selection.

You can also create your own platform files and add them to the list of available platforms.

Note
 The platform file contains information on the scan chain of a platform at the time the file was
saved. However, if you create a new scan chain configuration with the devices in a different
order, then the saved platform file is not auto-detected. However, you can still manually select
the platform configuration from the list of available platforms.

For more information on the various platforms supported, see also the Release Notes of the host
software for your debug hardware unit.

5.23.1 See also

Tasks
• Autodetecting a platform on page 5-41
• Manually selecting a platform on page 5-43
• Adding autoconfigure support for new platforms on page 5-46.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-40
ID121610 Non-Confidential

Creating debug hardware target configurations
5.24 Autodetecting a platform
The debug hardware autodetection feature checks to see if a platform configuration file is
available that matches the configuration of your development platform. If a platform
configuration is available, a the Select Platform dialog box is displayed. An example is shown
in the following figure:

Figure 5-13 Automatic platform configuration

Select your platform from the list and click OK. This causes the entire platform configuration
(that is, for the scan chain, Advanced settings and trace delays) to be loaded. The following
figure shows an example:
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-41
ID121610 Non-Confidential

Creating debug hardware target configurations
Figure 5-14 Platform configuration and identification

After the platform configuration is complete, the control pane shows the revised scan chain
device/platform configuration in use and the name of the loaded platform. The tree diagram also
reflects the new configuration.

Note
 You cannot add, move, or remove any devices when a platform configuration is in use.

During the configuration process, the label on the Select Platform... button changes to read as
Clear Platform.

5.24.1 See also

Tasks
• Manually selecting a platform on page 5-43
• Clearing a platform assignment from a debug hardware configuration on page 5-44
• Adding new platforms on page 5-45.

Concepts
• About platform detection and selection on page 5-40.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-42
ID121610 Non-Confidential

Creating debug hardware target configurations
5.25 Manually selecting a platform
For platforms that cannot be detected automatically, you can perform a manual selection from
a list of supported platforms. To do this, click the Select Platform... button from the Debug
System pane of the RVConfig utility, and the Select Platform dialog box displays. The following
figure shows an example:

Figure 5-15 List of supported platforms

In the Select Platform dialog box, select your platform and click OK. This causes the entire
platform configuration to be loaded, in a similar manner as when you are autodetecting a
platform.

During the configuration process, the label on the Select Platform... button changes to read as
Clear Platform.

You can also create your own platform files and add them to the list of available platforms.

5.25.1 See also

Tasks
• Autodetecting a platform on page 5-41
• Clearing a platform assignment from a debug hardware configuration on page 5-44
• Adding new platforms on page 5-45
• Adding autoconfigure support for new platforms on page 5-46.

Concepts
• About platform detection and selection on page 5-40.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-43
ID121610 Non-Confidential

Creating debug hardware target configurations
5.26 Clearing a platform assignment from a debug hardware configuration
You might want to clear a platform assignment from a debug hardware configuration because
you want to reconfigure the scan chain for your development platform.

Note
 This also clears the scan chain configuration. As an alternative, you might want to create a new
debug hardware configuration.

To clear a platform assignment:

1. Open the required debug hardware configuration file in RVConfig

2. Click Clear Platform.
The scan chain configuration is deleted.

3. Either autoconfigure the scan chain or manually add devices to the scan chain as required.

5.26.1 See also

Tasks
• Adding new platforms on page 5-45
• Autoconfiguring a scan chain on page 5-11
• Adding devices to the scan chain on page 5-12.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-44
ID121610 Non-Confidential

Creating debug hardware target configurations
5.27 Adding new platforms
RVConfig is preconfigured to support a number of platforms, but you can add support for more
platforms by creating your own platform files. You can also provide a name and the
manufacturer details for the new platform.

To create a new configuration file, you must:

1. Configure a scan chain for the new platform.

2. Make any changes to the device settings that are required.

3. Make any changes to the advanced settings that are required.

4. Make any changes to the trace settings that are required.

5. Specify a new platform name and its manufacturer in the Export As Platform dialog box.
To do this, select Export platform file... from the File menu.

6. In the Export As Platform dialog box, enter the new name and manufacturer details of the
platform in the Board Name and Manufacturer fields, respectively. The following
figure shows an example:

Figure 5-16 Export As platform dialog box

The name and manufacturer details of the platform are used to name the new platform
files, and are displayed in the Select Platform dialog box for the new platform.
On Windows, the platformFiles directory, shown in the figure above, is located in My
Documents\ARM\rvconfig\platformFiles. In Linux, it is located in
~/.rvconfig/platformFiles

7. Click OK.

5.27.1 See also

Tasks
• Configuring a JTAG scan chain on page 5-7
• About configuring a device list on page 5-9
• Autodetecting a platform on page 5-41
• Manually selecting a platform on page 5-43
• Adding autoconfigure support for new platforms on page 5-46
• Configuring the debug hardware Advanced settings on page 5-47
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4.

Concepts
• About platform detection and selection on page 5-40.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-45
ID121610 Non-Confidential

Creating debug hardware target configurations
5.28 Adding autoconfigure support for new platforms
When adding platforms to the Select Platform dialog box, a platform detection file .det is
created automatically after you have setup the board name and manufacturer. You can, however,
add more .det files to the platformFiles directory, which allow different hardware versions to
be recognized when you click the Auto Configure button. A .det file can contain information
for one or more platforms. The platform description consists of a JTAG ID code and mask for
each device on the JTAG scan chain of the target platform, and the name of the associated debug
hardware configuration file .rvc.

For example:

0x0B73B02F,0xFFFFFFFF, 0x07926001,0xFFFFFFFF, 0,0, 0x2B900F0F,0xFFFFFFFF =
mycompany_eg1.rvc

In the above example, the platform is expected to contain four devices on its scan chain. The
first device must have a JTAG ID code of 0x0B73B02F, the second 0x07926001, the third device
can have any ID code, and the code of the fourth device must be 0x2B900F0F.

Several .det files can be supplied, and each file can contain more than one line. For example:

0x22193024, 0xEFFFFFFF, 0,0, 0,0 = mycompany_eg2.rvc
0x08210024, 0xFFFFFFFF, 0,0, 0,0 = mycompany_eg2.rvc
0x05310024, 0xFFFFFFFF, 0,0, 0,0 = mycompany_eg3.rvc

In this example, a scan chain containing three devices, where the first device has an ID code of
0x22193024, 0x32193024 or 0x08210024 is associated with mycompany_eg2.rvc. The mask value of
0xEFFFFFFF means that both 0x22193024 and 0x32193024 are identified. If there are three devices,
and the first has an ID code of 0x05310024, then it is associated with mycompany_eg3.rvc.

When you click the Auto Configure button, the detected scan chain is compared against all the
platforms described by .det files. If the connected target matches any of these platforms, a
Select Platform dialog box is displayed, and asks the user to confirm that the platform has been
correctly detected.

It is possible to create platform information that associates a given scan chain with several .rvc
files. If this happens, the Select Platform dialog box lists all the platforms that match, and you
will be asked to select the platform that matches your hardware.

5.28.1 See also

Tasks
• Adding new platforms on page 5-45.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-46
ID121610 Non-Confidential

Creating debug hardware target configurations
5.29 Configuring the debug hardware Advanced settings
The Advanced settings enable you to change the global configuration settings for the debug
hardware unit. Such settings include debug connection mode settings and reset settings.

To configure the Advanced settings:

1. Open the RVConfig utility.

2. Either:
• connect to and configure a debug hardware connection to create a new

configuration file
• open an existing debug configuration file.

3. Select the Advanced settings group in the tree control to display the settings. The
following figure shows an example:

Figure 5-17 Displaying the advanced controls

4. Make the changes to the settings as required.

5. Select Save from the File menu to save your changes.

6. Select Exit from the File menu to close the RVConfig utility.

Note
 These settings are sent to a debug hardware unit whenever you connect to the unit from a
debugger. They are used as the default reset behavior for all target hardware that you debug with
that debug hardware unit.

5.29.1 See also

Tasks
• Debugging with a reset register on page 8-20
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-47
ID121610 Non-Confidential

Creating debug hardware target configurations
• Chapter 4 Managing the firmware on your debug hardware unit.

Reference
• Debug hardware Advanced settings on page 5-33.
ARM® DSTREAM™ System and Interface Design Reference:
• Reset signals, ../com.arm.doc.dui0499b/CHDHFJEH.html
• Serial Wire Debug, ../com.arm.doc.dui0499b/BEHIADEG.html.
ARM RVI and RVT System and Interface Design Reference:
• Reset signals, ../com.arm.doc.dui0517b/CHDHFJEH.html
• Serial Wire Debug, ../com.arm.doc.dui0517b/BEHIADEG.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-48
ID121610 Non-Confidential

Creating debug hardware target configurations
5.30 Saving your changes
To save any changes that you have made to a configuration in the RVConfig utility, select Save
from the File menu.

Changes are stored in a debug hardware configuration file, *.rvc. See your debugger
documentation for the location of this file. There can be a number of *.rvc files in this location,
and these are named with respect to the connection name.

You can change the location of the *.rvc file , or save multiple copies of the file for different
target configurations.

5.30.1 See also

Tasks
• Creating a debug hardware configuration file on page 5-4
• Opening an existing debug hardware configuration file in RVConfig on page 5-6
• Disconnecting from a debug hardware unit on page 5-50.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-49
ID121610 Non-Confidential

Creating debug hardware target configurations
5.31 Disconnecting from a debug hardware unit
You might want to disconnect from a debug hardware unit if you want to connect to another
debug hardware unit.

To disconnect from a debug hardware unit:

1. Select the debug hardware node in the tree diagram to display the RVConfig utility. The
following figure shows an example:

Figure 5-18 Displaying the connection controls

2. Click Disconnect.
If you have unsaved configuration changes, a warning dialog box appears. The following
figure shows an example:

Figure 5-19 Warning when disconnecting with unsaved configuration changes

3. In this warning dialog box:
• Click Yes to disconnect, losing any unsaved configuration data.
• Click No to remain connected. Save your changes, then disconnect.

5.31.1 See also

Tasks
• Connecting to a debug hardware unit on page 2-8
• Creating a debug hardware configuration file on page 5-4
• Saving your changes on page 5-49.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-50
ID121610 Non-Confidential

Creating debug hardware target configurations
5.32 Configuring a target processor for virtual Ethernet
For applications on your target to communicate over your network, you must configure virtual
Ethernet on the target processor. This is required if the target does not have its own Ethernet
hardware, or if its drivers have not yet been written.

Note
 The network settings are supported only on ARM7, ARM9, ARM11, and ARM SecurCore
processors using JTAG. They are not supported on CoreSight systems.

To configure virtual Ethernet for a target processor:

1. Open the RVConfig utility.

2. Either:
• connect to and configure a debug hardware connection to create a new debug

hardware configuration file
• open an existing debug hardware configuration file.

3. Connect to the required debug hardware unit.

4. Select the Devices node in the tree diagram.

5. Select the processor that want to configured for virtual Ethernet.

6. Set the network settings as required. The following table shows an example:

7. Select Save from the File menu to save the changes.

8. Select Exit from the File menu to close the RVConfig utility.

5.32.1 See also

Tasks
• Creating a debug hardware configuration file on page 5-4
• Connecting to a debug hardware unit on page 2-8
• Disconnecting from a debug hardware unit on page 5-50.

Reference
• Device configuration settings on page 5-26.

Table 5-1 Items for configuring static IP addresses

Device setting Example

IP Address 110.35.3.21

Network Mask 255.255.255.0

Default Gateway 110.35.3.254
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-51
ID121610 Non-Confidential

Creating debug hardware target configurations
5.33 CoreSight device names and classes
The following table shows the name and class of all CoreSight devices that are supported by the
debug hardware:

The device names are the names used in debug hardware configurations and trace association
files.

5.33.1 See also

Concepts
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19

Table 5-2 CoreSight device names and classes

Device name Description Device class

ARMCS-DP ARM CoreSight debug port (supports both JTAG-DP and
SW-DP)

Debug port

CSETB CoreSight Embedded Trace Buffer (ETB) Trace sink

CSETM CoreSight Embedded Trace Macrocell (ETM) Trace source

CSETM11 CoreSight Embedded Trace Macrocell designed for ARM11
(ETM11)

Trace source

CSTFUNNEL CoreSight Trace Funnel Link

CSTPIU CoreSight Trace Port Interface Unit Trace sink

CSHTM32 CoreSight AHB Trace Macrocell (HTM32) Trace source

CSHTM64 CoreSight AHB Trace Macrocell (HTM64) Trace source

CSITM CoreSight Instrumentation Trace Macrocell (ITM) Trace source

CSPTM CoreSight Program Trace Macrocell (ITM) Trace source

CSSWO CoreSight Serial Wire Output (SWO) Trace sink

ARM1136JFS-JTAG-AP ARM1136JF-S processor connected using JTAG-AP Core

ARM1156T2FS-JTAG-AP ARM1156T2FS processor connected using JTAG-AP Core

ARM1176JZF-JTAG-AP ARM1156T2FS processor connected using JTAG-AP Core

Cortex-M0 Cortex-M0 processor Core

Cortex-M1 Cortex-M1 processor Core

Cortex-M3 Cortex-M3 processor Core

Cortex-R4 Cortex-R4 processor Core

Cortex-A5 Cortex-A5 processor Core

Cortex-A8 Cortex-A8 processor Core

Cortex-A9 Cortex-A9 processor Core
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-52
ID121610 Non-Confidential

Creating debug hardware target configurations
• CoreSight topology and associations for multiple trace sources on page 6-21.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 5-53
ID121610 Non-Confidential

Chapter 6
Configuring CoreSight systems

The following topics describe CoreSight systems how to use RVConfig to configure them:

Tasks
• Loading a trace association file on page 6-13
• Reading the CoreSight ROM table on page 6-3
• Autodetecting Serial Wire Debug on page 6-5
• Defining CoreSight trace associations on page 6-7
• Setting up a CoreSight trace association file on page 6-11
• Loading a trace association file on page 6-13
• Configuring CoreSight processors on page 6-22
• Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems on page 6-23.

Concepts
• About CoreSight system configuration on page 6-2
• About trace associations on page 6-6
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21
• CoreSight autodetection on page 6-4.

Reference
• Format of trace associations on page 6-8
• Trace Association Editor dialog box on page 6-9.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-1
ID121610 Non-Confidential

Configuring CoreSight systems
6.1 About CoreSight system configuration
CoreSight systems consist of a Debug Access Port (DAP) that comprises the following
components:

• A debug port (DP) that connects to the scan chain or Serial Wire Debug (SWD) interface,
and that provides the system interface to debug hardware.

• Either Advanced High-performance Bus Access Port (AHB-AP for AHB access) or ARM
Peripheral Bus Access Port (APB-AP for APB access).

Debug components are attached to the buses, and are accessed through the APs on the DAP.
CoreSight debug components are configured with the index of the AP to which they are
attached, and the base address on the bus.

The DAP can also contain a JTAG-AP that enables the connection of JTAG devices on internal
scan chains, for example ARM11 processors. JTAG devices must be configured with the AP
index of the JTAG-AP, the JTAG port on the AP, and the pre-bits and post-bits for both IR and
DR scans for the particular device.

CoreSight components are associated with a DAP, so they are placed on the scan chain (or SWD
connection) after the DAP with which they are associated. The DAP is represented on the scan
chain by the ARMCS-DP device. CoreSight components are not located on the JTAG scan
chain, so they must be placed between the DAP and the next JTAG device.

6.1.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Setting up a CoreSight trace association file on page 6-11.

Concepts
• Reading the CoreSight ROM table on page 6-3
• CoreSight autodetection on page 6-4
• Autodetecting Serial Wire Debug on page 6-5.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-2
ID121610 Non-Confidential

Configuring CoreSight systems
6.2 Reading the CoreSight ROM table
If the target system contains a valid CoreSight ROM table, you can use this to configure the
AHB-AP and APB-AP devices behind the Debug Access Port (DAP).

To configure CoreSight devices using a CoreSight ROM table:

• If you are manually adding devices to the scan chain:
1. Add the ARMCS-DP device.
2. Right-click on the ARMCS-DP device, then select the Read CoreSight ROM

Table option.

• If you are autoconfiguring scan chain, ensure that the Read CoreSight ROM Tables
checkbox is selected before you auto configure. The checkbox is selected by default.

6.2.1 See also

Tasks
• Setting up a CoreSight trace association file on page 6-11
• Loading a trace association file on page 6-13
• CoreSight autodetection on page 6-4
• Autodetecting Serial Wire Debug on page 6-5.

Concepts
• About CoreSight system configuration on page 6-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-3
ID121610 Non-Confidential

Configuring CoreSight systems
6.3 CoreSight autodetection
Autodetecting a CoreSight system adds the ARMCS-DP device. The device represents the
Debug Access Port (DAP) in a CoreSight system. If the system contains a valid CoreSight ROM
table, the devices listed in that table are also added by default.

The Read CoreSight ROM Table checkbox enables you to enable or disable the automatic
reading of the table during an autoconfigration. The following figure shows the location of this
checkbox:

Figure 6-1 Read CoreSight ROM Table option

You can also force a read of the CoreSight ROM Table as follows:

1. Right-click on the ARMCS-DP device.

2. Select Read CoreSight ROM tables from the context menu.

Note
 If you uncheck the Read CoreSight ROM Table checkbox, or the table read fails, you can
manually add the CoreSight devices to the scan chain.

6.3.1 See also

Tasks
• Setting up a CoreSight trace association file on page 6-11
• Reading the CoreSight ROM table on page 6-3
• Autodetecting Serial Wire Debug on page 6-5.

Concepts
• About configuring a device list on page 5-9
• About CoreSight system configuration on page 6-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-4
ID121610 Non-Confidential

Configuring CoreSight systems
6.4 Autodetecting Serial Wire Debug
Serial Wire Debug (SWD) does not support a scan chain in the same way that JTAG does. When
autoconfiguring in SWD mode, the debug hardware unit:

1. Adds the ARMCS-DP device to the scan chain configuration.

2. Optionally reads the CoreSight ROM Table to add the remaining devices. This is done by
default, but you can override this.

6.4.1 See also

Tasks
• Setting up a CoreSight trace association file on page 6-11
• Reading the CoreSight ROM table on page 6-3
• CoreSight autodetection on page 6-4.

Concepts
• About CoreSight system configuration on page 6-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-5
ID121610 Non-Confidential

Configuring CoreSight systems
6.5 About trace associations
Trace associations are stored in the debug hardware configuration file (.rvc). However, you can
save the associations in a separate file, if you want to provide the associations to other users
using a similar development platform.

Trace associations are required to describe the associations between the processors and the
trace-related devices in complex CoreSight systems. Examples of such associations are:
• processor outputs into an ETM
• ETM outputs into an ETB
• ETM input from a particular processor
• CoreSight ETM outputs into a Trace Port Interface Unit (TPIU)
• TPIU input from a particular trace source
• ETB input from a particular trace source.

Your debug tools use the associations in the debug hardware configuration file to determine the
components that must be programmed for tracing a specific source in the system

Associations have direction, and some are bi-directional. You must configure associations
correctly to enable your debugger to associate trace output with the source of generated trace.

Note
 Although a trace association might be created for a non-CoreSight system, do not modify it.

6.5.1 See also

Concepts
• CoreSight device names and classes on page 5-52
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-6
ID121610 Non-Confidential

Configuring CoreSight systems
6.6 Defining CoreSight trace associations
You can define CoreSight trace associations:

By order CoreSight components are accessible through a Debug Access Port (DAP). The
template used to access the DAP is called the ARM CoreSight Debug Port
(ARMCS-DP). Any CoreSight components that follow the ARMCS-DP are
associated with it. If there are multiple DAPs, the devices must be ordered this
way:
1. ARMCS-DP
2. associated CoreSight devices
3. ARMCS-DP
4. associated devices.

Note
 The order of the devices listed in the trace association file must match the order

of devices as defined in the RVConfig utility.

By input and output attributes
Components have inputs and outputs, and when you define these connections you
define the trace flow through a system.

6.6.1 See also

Concepts
• CoreSight device names and classes on page 5-52
• About trace associations on page 6-6
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-7
ID121610 Non-Confidential

Configuring CoreSight systems
6.7 Format of trace associations
Trace associations consist of a number of distinct elements separated by semi-colons. The
following table lists the elements of an association:

6.7.1 Example trace association file

The following example is an association file for a system containing a Cortex-R4 processor, a
CoreSight TPIU, a CoreSight ETM, a CoreSight ETB, and a CoreSight DAP:

Name=ARMCS-DP;Type=ARMCS-DP;Name=Cortex-R4;Type=Cortex-R4;ETM=ETMR4;Name=ETMR4;Type=CSE
TM;TraceOutput0=TPIU;TraceOutput1=ETB;Core=Cortex-R4;Name=ETB;Type=CSETB;Port0=ETMR4;Na
me=TPIU;Type=CSTPIU;Port0=ETMR4;

Note
 Although the format of an association file takes the form shown in this example, you must use
the Trace Associations... button to create your associations.

6.7.2 See also

Concepts
• About trace associations on page 6-6
• Setting up a CoreSight trace association file on page 6-11
• CoreSight device names and classes on page 5-52
• Defining CoreSight trace associations on page 6-7
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.

Table 6-1 Trace association file element names and descriptions

Element name Description

Name A unique name for the component in this list.

Type A type identifier for the specified component. This must match the name of the template for the
component.

Portn Used only for components that are trace sinks. Indicates that this component can get input from the
component specified as connected to it using a Port. When specifying a Port, each Port element tag
must be suffixed with a number starting at 0, for example “Port0=Cortex-R4;Port1=Cortex-A8;”.

TraceOutputn Used only for components that are trace sources. Indicates that this component can output into the
component specified as a TraceOutput. Where more than one TraceOutput must be specified, each
TraceOutput element tag must be suffixed with a number starting at 0, for example
“TraceOutput0=ETB;TraceOutput1=TPIU;”.

Core Used to link a component to a processor.

ETM Used to link a component to an ETM.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-8
ID121610 Non-Confidential

Configuring CoreSight systems
6.8 Trace Association Editor dialog box
The Trace Association Editor dialog box enables you to set up device associations for a
CoreSight system. All associations are shown expanded by default. The following figure shows
an example:

Figure 6-2 Trace Association Editor dialog box

The devices shown in the Trace Association Editor dialog box reflect the order of those in the
scan chain. To expand the details for a device, either double-click on the device name, or click
the + button for the device.

To assign an association to a device:

1. Double-click <add association...> for the device to display the Edit Association dialog
box. The following figure shows an example:

Figure 6-3 Edit Association dialog box

2. Select the required device to be used for the association from the drop-down list on the
left of the dialog box.

3. Type a description of the association in the field on the right.

4. Click OK.

To change any typed text, double-click on an association description, and edit the text in the Edit
Association dialog.

To delete an association description, select the association and click Delete.

To clear all associations created, click Delete All.

To save your associations to a file:

1. Click the Save... button. The Save RealView Associations File... dialog box displays.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-9
ID121610 Non-Confidential

Configuring CoreSight systems
2. Locate an appropriate directory to save your file.

3. Click Save.

To load an associations file:

1. Click the Load... button. The Load RealView Associations File... dialog box displays.

2. Locate the directory containing your CoreSight associations files.

3. Select the appropriate .txt file.

4. Click Open.

To return to the RVConfig utility main window, click OK.

6.8.1 See also

Tasks
• Setting up a CoreSight trace association file on page 6-11.

Concepts
• About CoreSight system configuration on page 6-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-10
ID121610 Non-Confidential

Configuring CoreSight systems
6.9 Setting up a CoreSight trace association file
CoreSight systems can contain many trace sources and sinks. To enable your debugger to
capture trace correctly from a system, and to associate the trace information with the source that
generated it, you must use a CoreSight trace association file.

To set up a CoreSight trace association file:

1. Open the RVConfig utility.

2. Either:
• connect to and configure a debug hardware connection to create a new debug

hardware configuration file
• open an existing debug hardware configuration file.

3. Click the Trace Associations... button to display the Trace Association Editor dialog box.
The following figure shows an example:

Figure 6-4 Trace Association Editor dialog box

The devices shown reflect the order of those in the scan chain.

4. To expand the details for a device, double-click on the device name.

5. To add a new association for a device, double-click on <add association...> for that
device to display the Edit Association dialog box.

6. Set the required associations from each of the available drop-down menus. The following
figure shows an example:

Figure 6-5 Edit Association dialog box

7. Click OK to return to the Trace Association Editor dialog box.

8. Assign associations for other devices as required:
• To change any associations listed under the Association column, double-click on

that association to display the Edit Association dialog box, and make the required
changes.
Click OK to return to the Trace Association Editor dialog box.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-11
ID121610 Non-Confidential

Configuring CoreSight systems
• To delete a single association, select the association and click Delete.
You are not asked to confirm the deletion.

• To delete all the associations in the system, click Delete All.
You are not asked to confirm the deletion.

9. Save your trace associations file:
a. Click Save... to display the Save RealView Associations File... dialog box.
b. Locate the directory where you want to save the file.
c. Click Save.
You might want to save a Trace Association file if you want to provide the associations
with other users using a similar development platform.

10. Click OK to return to the RVConfig utility main window.
An asterisk in a device box of the schematic diagram indicates that the device is associated
with another device. The following figure shows that the CSETM and the Cortex-A8
devices have associations:

Figure 6-6 Devices with associations

6.9.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Loading a trace association file on page 6-13
• Reading the CoreSight ROM table on page 6-3
• CoreSight autodetection on page 6-4.

Concepts
• About CoreSight system configuration on page 6-2
• Autodetecting Serial Wire Debug on page 6-5
• About trace associations on page 6-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-12
ID121610 Non-Confidential

Configuring CoreSight systems
6.10 Loading a trace association file
To load a CoreSight trace association file:

1. Open the RVConfig utility.

2. Either:
• connect to and configure a debug hardware connection to create a new debug

hardware configuration file
• open an existing debug hardware configuration file.

3. Click the Trace Associations... button to display the Trace Association Editor dialog box.
The following figure shows an example:

Figure 6-7 Trace Association Editor dialog box

The devices shown reflect the order of those in the scan chain.

4. Click Load... to display the Load RealView Associations File... dialog box.

5. Locate the directory where you saved your trace association file.

6. Click Open to load the file and return to the Trace Association Editor dialog box.

7. Click OK to return to the RVConfig utility main window.
An asterisk in a device box of the schematic diagram indicates that the device is associated
with another device. The following figure shows that the CSETM and the Cortex-A8
devices have associations:

Figure 6-8 Devices with associations
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-13
ID121610 Non-Confidential

Configuring CoreSight systems
6.10.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Setting up a CoreSight trace association file on page 6-11
• Reading the CoreSight ROM table on page 6-3
• CoreSight autodetection on page 6-4.

Concepts
• About CoreSight system configuration on page 6-2
• Autodetecting Serial Wire Debug on page 6-5
• About trace associations on page 6-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-14
ID121610 Non-Confidential

Configuring CoreSight systems
6.11 CoreSight topology and associations for the CoreSight DK11
The following figure shows the CoreSight topology diagram for CoreSight DK11:

Figure 6-9 CoreSight system topology diagram - CoreSight DK11

The Association file for this is:

Name=ARMCS-DP;Type=ARMCS-DP;Name=ARM1136JFS-JTAG-AP;Type=ARM1136JFS-JTAG-AP;ETM=ETM11;N
ame=ETM11;Type=CSETM11;TraceOutput0=ETB;TraceOutput1=TPIU;Core=ARM1136JFS-JTAG-AP;Name=
ETB;Type=CSETB;Port0=ETM11;Name=TPIU;Type=CSTPIU;Port0=ETM11;

In this Association file:

Name=ARMCS-DP;Type=ARMCS-DP;
This line specifies the first device in the list is the ARM CoreSight Debug port.
Any CoreSight components that are connected by the Debug Port associated with
this template must follow this device.

Name=ARM1136JFS-JTAG-AP;Type=ARM1136JFS-JTAG-AP;ETM=ETM;
This line specifies that an ARM1136JF-S processor is connected to a JTAG-AP
on the preceding ARMCS-DP. The ETM=ETM11 section states that the processor has
an associated ETM called ETM11.

Name=ETM11;Type=CSETM11;TraceOutput0=ETB;TraceOutput1=TPIU;Core=ARM
1136JFS-JTAG-AP;

This line specifies that an ETM is accessible using the preceding ARMCS-DP.
TraceOutput0=ETB signifies that this ETM can output into the component named
ETB.
TraceOutput1=TPIU signifies that this ETM can output into the component named
Trace Port Interface Unit (TPIU).
Core=ARM1136JFS-JTAG-AP signifies that the source for trace captured by this ETM
is the ARM1136JFS-JTAG-AP device.

Name=ETB;Type=CSETB;Port0=ETM11;
This line specifies that a CoreSight ETB is accessible using the preceding
ARMCS-DP.
Port0=ETM11; indicates that the source of trace that is stored in this ETB is the
component named ETM11.

ARM1136JF-S CSETM11

JTAG-AP

DAP

ARMCS-DP

APB-AP

TPIU

ETB
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-15
ID121610 Non-Confidential

Configuring CoreSight systems
Name=TPIU;Type=CSTPIU;Port0=ETM;
This line specifies that a CoreSight TPIU is accessible using the preceding
ARMCS-DP.
Port0=ETM indicates that the source of trace that is stored in this ETB is the
component named ETM11.

Note
 Although the funnel is located between the trace sources and trace sinks, it is not necessary to
include it in the Association mapping. The funnel can be used to control the flow of trace
through the system dynamically. The purpose of the Association file is to describe a static view
of the trace flow through the system.

6.11.1 See also

Concepts
• Setting up a CoreSight trace association file on page 6-11
• CoreSight device names and classes on page 5-52
• About trace associations on page 6-6
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-16
ID121610 Non-Confidential

Configuring CoreSight systems
6.12 CoreSight topology and associations for the Cortex-R4 FPGA
The following figure shows the CoreSight topology diagram for Cortex-R4 FPGA:

Figure 6-10 CoreSight system topology diagram - Cortex-R4 FPGA

The Association file for this is:

Name=ARMCS-DP;Type=ARMCS-DP;Name=Cortex-R4;Type=Cortex-R4;ETM=ETMR4;Name=ETMR4;Type=CSE
TM;TraceOutput0=TPIU;TraceOutput1=ETB;Core=Cortex-R4;Name=ETB;Type=CSETB;Port0=ETMR4;Na
me=TPIU;Type=CSTPIU;Port0=ETMR4;

In this Association file:

Name=ARMCS-DP;Type=ARMCS-DP;
This line specifies the first device in our list is the ARM CoreSight Debug port.
Any CoreSight components that are connected using the Debug Port associated
with this template must follow this device.

Name=Cortex-R4;Type=Cortex-R4;ETM=ETMR4;
This line specifies that a Cortex-R4 processor is connected using the preceding
ARMCS-DP. The ETM=ETMR4 section states that the processor has an associated
ETM called ETMR4.

Name=ETMR4;Type=CSETM;TraceOutput0=TPIU;TraceOutput1=ETB;Core=Cortex-
R4;

This line specifies that an ETM is accessible using the preceding ARMCS-DP.
TraceOutput0=TPIU signifies that this ETM can output into the component named
Trace Port Interface Unit (TPIU).
TraceOutput1=ETB signifies that this ETM can output into the component named
ETB.
Core=Cortex-R4 signifies that the source for trace captured by this ETM is the
Cortex-R4 device.

Name=ETB;Type=CSETB;Port0=ETMR4;
This line specifies that a CoreSight ETB is accessible using the preceding
ARMCS-DP.
Port0=ETMR4; indicates that the source of trace that is stored in this ETB is the
component named ETMR4.

APB

Cortex-R4 CSETM

DAP

ARMCS-DP

APB-AP

TPIU

ETB
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-17
ID121610 Non-Confidential

Configuring CoreSight systems
Name=TPIU;Type=CSTPIU;Port0=ETMR4;
This line specifies that a CoreSight TPIU is accessible using the preceding
ARMCS_DP.
Port0=ETMR4; indicates that the source of trace that is routed through this TPIU is
the component named ETMR4.

The following figure shows the Cortex-R4 FPGA Associations:

Figure 6-11 Cortex-R4 FPGA Associations

6.12.1 See also

Concepts
• Setting up a CoreSight trace association file on page 6-11
• CoreSight device names and classes on page 5-52
• About trace associations on page 6-6
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.

ETB TPIUDevice
List

1. Associations defined by order of devices

Cortex-R4

2. Association defined by ETM=ETM element for Cortex-R4

3. Association defined by Core=Cortex-R4 7. Association defined by TraceOutput1=TPIU

4. Association defined by TraceOutput2=ETB

6. Association defined by TraceInput=ETM

5. Association defined by TraceInput=ETM

3

ARMCS-DP ETM

1

2 4
5

6
7

ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-18
ID121610 Non-Confidential

Configuring CoreSight systems
6.13 CoreSight topology and associations for the Cortex-M3 FPGA
The following figure shows the CoreSight topology diagram for Cortex-M3 FPGA:

Figure 6-12 CoreSight system topology diagram - Cortex-M3 FPGA

The Association file for this is:

Name=ARMCS-DP;Type=ARMCS-DP;Name=Cortex-M3;Type=Cortex-M3;ETM=ETMM3;Name=ETMM3;Type=CSE
TM;Core=Cortex-M3;TraceOutput=TPIU;Name=Funnel;Type=CSTFunnel;Name=TPIU;Type=CSTPIU;Por
t0=ETMM3;

In this Association file:

Name=ARMCS-DP;Type=ARMCS-DP;
This line specifies the first device in our list is the ARM CoreSight Debug port.
Any CoreSight components that are connected using the Debug Port associated
with this template must follow this device.

Name=Cortex-M3;Type=Cortex-M3;ETM=ETMM3;
This line specifies that a Cortex-M3 processor is accessible using the preceding
ARMCS-DP. The ETM=ETMM3 section states that the processor has an associated
ETM called ETMM3.

Name=ETMM3;Type=CSETM;Core=Cortex-M3;TraceOutput=TPIU;
This line specifies that an ETM is accessible using the preceding ARMCS-DP.
TraceOutput=TPIU signifies that this ETM can output into the component named
Trace Port Interface Unit (TPIU).
Core=Cortex-M3 signifies that the source for trace captured by this ETM is the
Cortex-M3 device.

Name=Funnel;Type=CSTFunnel;
This line specifies that a CoreSight Trace Funnel is accessible using the preceding
ARMCS-DP.

Name=TPIU;Type=CSTPIU;Port0=ETMM3;
This line specifies that a CoreSight TPIU is accessible using the preceding
ARMCS_DP.
Port0=ETMM3 indicates that the source of trace that is stored in this ETB is the
component named ETMM3.

AHB

Cortex-M3

DAP

ARMCS-DP

AHB-AP

TPIUCSETM

Trace
Funnel
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-19
ID121610 Non-Confidential

Configuring CoreSight systems
6.13.1 See also

Concepts
• Setting up a CoreSight trace association file on page 6-11
• CoreSight device names and classes on page 5-52
• About trace associations on page 6-6
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for multiple trace sources on page 6-21.

Reference
• Trace Association Editor dialog box on page 6-9.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-20
ID121610 Non-Confidential

Configuring CoreSight systems
6.14 CoreSight topology and associations for multiple trace sources
The following figure shows there are two Cortex-R4 processors in the system, each with an
associated ETM:

Figure 6-13 CoreSight system topology diagram - multiple trace source system

The processors and ETMs are numbered for convenience, and this numbering scheme is used in
the Associations file.

The Association file for this is:

Name=ARMCS-DP;Type=ARMCS-DP; Name=Cortex-R4_1;Type=Cortex-R4;ETM=CSETM_1;
Name=Cortex-R4_2;Type=Cortex-R4;ETM=CSETM_2;
Name=CSETM_1;Type=CSETM;TraceOutput0=TPIU;TraceOutput1=ETB;Core=Cortex-R4_1;
Name=CSETM_2;Type=CSETM;TraceOutput0=TPIU;TraceOutput1=ETB;Core=Cortex-R4_2;
Name=Funnel;Type=CSTFunnel; Name=ETB;Type=CSETB;Port0=CSETM_1;Port1=CSETM_2;
Name=TPIU;Type=CSTPIU;Port0=CSETM_1;Port1=CSETM_2;

6.14.1 See also

Concepts
• CoreSight device names and classes on page 5-52
• About trace associations on page 6-6
• Defining CoreSight trace associations on page 6-7
• Format of trace associations on page 6-8
• CoreSight topology and associations for the CoreSight DK11 on page 6-15
• CoreSight topology and associations for the Cortex-R4 FPGA on page 6-17
• CoreSight topology and associations for the Cortex-M3 FPGA on page 6-19.

Reference
• Trace Association Editor dialog box on page 6-9.

APB

Cortex-R4 #2 CSETM #2

DAP

ARMCS-DP

APB-AP

Cortex-R4 #1 CSETM #1
TPIU

ETB

Funnel Replicator
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-21
ID121610 Non-Confidential

Configuring CoreSight systems
6.15 Configuring CoreSight processors
The following figure shows an example of the CoreSight device settings for a processor:

Figure 6-14 CoreSight device settings for a processor

The following configuration items are available when configuring CoreSight processors:

CoreSight AP index (CORESIGHT_AP_INDEX)
This is the index of the AP in the Debug Access Port (DAP) that must be used to
access the CoreSight debug registers for the CoreSight component.

CoreSight base address (CORESIGHT_BASE_ADDRESS)
This is the base address of the CoreSight debug registers on the bus that is
accessed through the AP as specified in the CoreSight AP Index configuration
item.

6.15.1 See also

Concepts
• Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems on page 6-23
• Configuring Reset options in debug hardware on page 5-37
• Configuring CoreSight systems with multiple devices per JTAG-AP multiplexor port on

page 6-25
• Configuring SecurCore behavior if the processor clock stops when stepping instructions

on page 5-38
• Configuring TrustZone enabled processor behavior when debug privileges are reduced on

page 5-39.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-22
ID121610 Non-Confidential

Configuring CoreSight systems
6.16 Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems
The following ARM7, ARM9, and ARM11 processors are supported in CoreSight systems:
• ARM7EJ-S
• ARM7TDMI
• ARM7TDMI rev 4
• ARM926EJ-S
• ARM946ES
• ARM966ES
• ARM968ES
• ARM9EJ-S
• ARM1136JF-S
• ARM1156T2F-S
• ARM1176JZF-S
• MPCore.

You must add:
• the ARMJTAG-DP device
• the corresponding JTAG Access Port (JTAG-AP) for the processor.

The following configuration items area available when configuring these processors in
CoreSight systems:

CoreSight ETM (CORESIGHT_ETM)
In systems where a non-Cortex processor, for example ARM1136JF-S, is
connected to a Debug Access Port (DAP) through the JTAG-AP port, there are
two possible ways in which the ETM in such a system can be provided:
• the non-Cortex method, whereby the ETM is accessible through an internal

scan chain on the processor
• the method whereby the ETM is accessible through the APB-AP on the

DAP.
If the system has the ETM connected through the DAP, then you must set this
configuration item to True.

CoreSight AP index (CORESIGHT_AP_INDEX)
The index of the JTAG-AP in the DAP that must be used to access the CoreSight
debug registers for the CoreSight component.

JTAG-AP Port index for core (JTAG_PORT_ID)
Each JTAG-AP implements eight JTAG port, each with its own TDI, TDO, TMS,
and so on.The port index refers to the JTAG to which your CoreSight component
is connected.

Fast memory download (FAST_MEM_WRITES)
The Fast Memory Download option is available for those targets where the DAP
and the Core are running fast enough to handle the data being sent to them by the
debug hardware unit without the debug hardware unit having to check that each
individual transaction with the DAP has been successful. The processor is behind
the DAP, so all processor accesses have to go through the DAP. As a guide, this
setting must not be set for those targets that are FPGA-based.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-23
ID121610 Non-Confidential

Configuring CoreSight systems
Note
 With this option set, error checking is disabled. If any errors occur, you are not

informed. If problems are encountered when downloading images, uncheck this
option to resolve them.

6.16.1 See also

Concepts
• Configuring CoreSight processors on page 6-22
• Configuring Reset options in debug hardware on page 5-37
• Configuring CoreSight systems with multiple devices per JTAG-AP multiplexor port on

page 6-25
• Configuring SecurCore behavior if the processor clock stops when stepping instructions

on page 5-38
• Configuring TrustZone enabled processor behavior when debug privileges are reduced on

page 5-39.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-24
ID121610 Non-Confidential

Configuring CoreSight systems
6.17 Configuring CoreSight systems with multiple devices per JTAG-AP multiplexor
port

The debug hardware unit does not support auto-detection of devices behind a JTAG-AP.
Therefore, you must manually specify the JTAG scan chain attributes so that the unit can put the
other devices into BYPASS.

To debug CoreSight systems that have processors connected to the Debug Access Port (DAP)
through JTAG-AP, debug hardware must know the pre-bits and post-bits for JTAG operations.
The following figure shows a hypothetical scan chain that could be connected to a JTAG-AP.

Figure 6-15 Scan chain connected to a JTAG-AP

Multiple devices on the scan chain are connected in series, with data flowing serially from TDI
to TDO. This means that debugging a given target in the chain requires that certain pre-scan and
post-scan bits are used to ensure that the other devices are not affected by the data directed at
the target device, and that the data is positioned correctly in the serial scan for the target device.

To debug this system, you must set the following four configuration items:

• Pre-scan IR bits for Devices after the core on the JTAG-AP scanchain
(JTAG_AP_IR_PRE_BITS)
This is the total length of the JTAG instruction registers (IRs) for devices appearing
between the processor being configured and the CSTDO input on the JTAG-AP port. In
the figure above, the three devices that appear between the target processor and the
CSTDO input on the JTAG-AP port have IR lengths 5, 7 and 11, respectively. Therefore,
you must set this value to 23.

• Post-scan IR bits for Devices before the core on the JTAG-AP scanchain
(JTAG_AP_IR_POST_BITS)
This is the total length of the JTAG IRs for devices appearing between the CSTDI output
on the JTAG-AP port and the processor being configured. In the figure above, the two
devices that appear between the CSTDI output on the JTAG-AP port and the processor
being configured have IR lengths 2 and 3, respectively. Therefore, you must set this value
to 5.

• Pre-scan DR bits for Devices after the core on the JTAG-AP scanchain
(JTAG_AP_DR_PRE_BITS)
This is the total number of devices appearing between the processor being configured and
the CSTDO input on the JTAG-AP port. In the figure above, there are three devices that
appear between the processor being configured and the CSTDO input on the JTAG-AP
port. Therefore, you must set this value to 3.

• Post-scan DR bits for Devices before the core on the JTAG-AP scanchain
(JTAG_AP_DR_POST_BITS)

Debug Access Port (DAP)

DAP
Internal
Bus

TCKn
RTCKn

TCK0
RTCK0

JTAG-AP MUX

CSTDI

CSTDO

CSTDI

CSTDO

IR=2 Core

PostScan-DR=2 (Device Count)

IR=11IR=7IR=5IR=3

PreScan

PreScan-IR=23 (Sum of IR Lengths)

PreScan-DR=3 (Device Count)

PostScan-IR=5 (Sum of IR Lengths)

PostScan

Debug
Port
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-25
ID121610 Non-Confidential

Configuring CoreSight systems
This is the total number of devices appearing between the CSTDI output on the JTAG-AP
port and the processor being configured. In the figure above, there are two devices that
appear between the CSTDI output on the JTAG-AP port and the processor being
configured. Therefore, you must set this value to 2.

6.17.1 See also

Concepts
• Configuring CoreSight processors on page 6-22
• Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems on page 6-23
• Configuring Reset options in debug hardware on page 5-37
• Configuring SecurCore behavior if the processor clock stops when stepping instructions

on page 5-38
• Configuring TrustZone enabled processor behavior when debug privileges are reduced on

page 5-39.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 6-26
ID121610 Non-Confidential

Chapter 7
Using Trace

The following topics describe the trace features supported by your trace hardware:
• About using trace hardware on page 7-2
• Trace hardware capture rates on page 7-3
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4
• Configuring your debugger for trace capture on page 7-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-1
ID121610 Non-Confidential

Using Trace
7.1 About using trace hardware
Trace hardware is included in a DSTREAM unit, or is available as a separate RVT or RVT2 unit
for use with RVI.

The trace data capture feature works in conjunction with the debug run control feature in debug
hardware. Together, they provide real-time trace functionality for software running in leading
edge System-on-Chip (SoC) devices with deeply embedded processors that contain the
Embedded Trace Macrocell (ETM) logic.

The trace functionality enables:

• collection of trace information at clock speeds of up to 480MHz

• provision of a data streaming capability through a USB2 interface. This enables profiling
directly from a hardware platform, in combination with a debug hardware unit.

The streaming of trace data removes the usual trace capture unit dependence on the size of the
on-board buffer. It enables you to capture profiling data in a file on the system hosting the
profiling software over long periods. The limitations are:
• the disk space available on the host system
• the amount of data you consider reasonable to analyze.

Note
 Profiling is not supported from a DSTREAM unit in this release.

7.1.1 See also

Tasks
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4
• Configuring your debugger for trace capture on page 7-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-2
ID121610 Non-Confidential

Using Trace
7.2 Trace hardware capture rates
If a Trace Port Interface Unit (TPIU) in continuous mode is used, all port widths from 1 to 32
can be output by the target. DDR clocking enables data to be output from the ETM on both edges
of TRACECLK. This effectively halves the clock frequency for the same data rate.

7.2.1 DSTREAM trace hardware capture rates

The maximum capture rate of the DSTREAM unit is 600 Mbps per trace signal using a 300MHz
DDR clock signal. The capture buffer is 4GB in size.

Note
 Some debuggers have limitations when tracing with DSTREAM. See your debugger
documentation for details of the trace capabilities of your debugger.

7.2.2 See also

Tasks
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4
• Configuring your debugger for trace capture on page 7-6.

Concepts
• About using trace hardware on page 7-2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-3
ID121610 Non-Confidential

Using Trace
7.3 Configuring trace lines (DSTREAM and RVT2 only)
If you have a DSTREAM unit or RVT2 unit, you can configure delays on the trace lines. To do
this:

1. Open the RVConfig utility.

2. If you have already configured a debug hardware unit, select Open from the File menu to
locate and open the corresponding configuration file.
Otherwise:
a. Connect to the required debug hardware unit.
b. Create a new debug hardware configuration.

3. Select the Trace node in the tree control. The following figure shows an example:

Figure 7-1 Trace node in RVConfig

You can delay each line by a specified amount of time (expressed in picoseconds, in 75ps
intervals). Default delays are configured into the unit, and you are able to delay each
signal by a specified amount relative to these defaults, allowing for variations in target
hardware.
You can also invert the clock so that data is sampled on the falling edge (rather than on
the rising edge) of the clock. To do this, select the True/False checkbox. The default is
False (unchecked).

Note
 Some debuggers have limitations when tracing with DSTREAM. See your debugger
documentation for details of the trace capabilities of your debugger.

7.3.1 See also

Tasks
• Connecting to a debug hardware unit on page 2-8
• Creating a debug hardware configuration file on page 5-4
• Configuring your debugger for trace capture on page 7-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-4
ID121610 Non-Confidential

Using Trace
Concepts
• About using trace hardware on page 7-2.

Reference
• Trace hardware capture rates on page 7-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-5
ID121610 Non-Confidential

Using Trace
7.4 Configuring your debugger for trace capture
When you have installed the host software and connected and configured the debug hardware
unit, you must configure your debugger to use trace.

For full details on how to capture trace with your debugger, see the documentation that
accompanies your debugger.

7.4.1 See also

Tasks
• Configuring trace lines (DSTREAM and RVT2 only) on page 7-4.

Concepts
• About using trace hardware on page 7-2.

Reference
• Trace hardware capture rates on page 7-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 7-6
ID121610 Non-Confidential

Chapter 8
Debugging with your debug hardware unit

The following topics provide information about debugging with debug hardware:
• Post-mortem debugging on page 8-2
• Semihosting on page 8-4
• Adding an application SVC handler when using debug hardware on page 8-5
• Cortex-M3 semihosting on page 8-7
• Hardware breakpoints on page 8-8
• Software instruction breakpoints on page 8-9
• Processor exceptions on page 8-10
• Breakpoints and the program counter on page 8-11
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12
• Problems setting breakpoints on page 8-14
• Strategies used by debug hardware to debug cached processors on page 8-15
• Debugging applications in ROM on page 8-17
• Debugging from reset on page 8-18
• Debugging with a simulated reset on page 8-19
• Debugging with a reset register on page 8-20
• Debugging with a target reset on page 8-21
• Debugging systems with ROM at the exception vector on page 8-22.

Note
 For more general information about debugging, see your debugger documentation.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-1
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.1 Post-mortem debugging
Post-mortem debugging enables you to examine the state of a system that has previously been
running but is currently not connected to debug hardware.

8.1.1 Prerequisites

Before you can examine a running target with debug hardware, you must configure the debug
hardware unit for that target. If you have a target that is operating without a debug hardware unit
connected, and you want to examine it to find out why it is behaving in a particular way, you
must power-up the debug hardware unit and configure the connection without disturbing the
state of the target. This requires that the debug hardware unit is powered before it is connected
to the target.

The debug hardware unit includes power conditioning and switching circuitry that enables you
to plug and unplug the JTAG cable without affecting the target.

Note
 The voltage reference used by the debug hardware unit JTAG circuit is generated from the
VTref signal present on the JTAG connector. If this signal is not connected at the target, you
must modify the target or the JTAG cable to supply a suitable reference. Connecting VTref to
Vsupply is usually sufficient.

8.1.2 Procedure

To connect to a running target:

1. Ensure that the JTAG input lines TDI, TMS, nSRST, and nTRST have pull-up resistors
(normal practice), and TCK has a pull-down resistor, so that when the adaptor is
disconnected from the target these lines are in their quiescent state.

2. Plug the power jack into the debug hardware unit and wait for it to boot.

3. Configure the debug hardware connection. You must do one of the following:
• load a configuration that you have previously saved
• manually configure the connection
• autoconfigure using a separate test system.

Note
 Do not use autoconfigure on the target to be debugged, because doing so might reset the

processor.

4. If the target processor, such as an ARM7TDMI, does not have any system registers, you
must explicitly configure the endianness.

Note
 Do not automatically detect the endianness of target processors that do not have a system

register. Doing so might disturb the state of the processor.

5. Plug the JTAG cable into the target.

Caution
 To prevent unwanted resets during connection of the debug hardware, it is essential that

either:
• the target and debug hardware are properly earthed
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-2
ID121610 Non-Confidential

Debugging with your debug hardware unit
• the ground pins of the debug connector make contact before the signal pins.

6. Start the debugger, and connect to the running target.
In your debug hardware configuration, set the Post Reset State to Running.
In your debugger, connect using the Connect (Connection Modes) of No Reset / No
Stop.

7. To get a high-level (source code) view of the problem, load the symbol table for your
target program into the debugger.

8. If the processor stopped during debugging, then in your debugger:
a. Clear any breakpoints that you have set.
b. Start the processor running
c. Disconnect from all targets to which the debugger is connected on your

development platform.
If the processor is still running, then in your debugger disconnect from all targets to which
the debugger is connected on your development platform.

9. Unplug the JTAG connector from the development platform.

8.1.3 See also

Tasks
• Configuring the debug hardware Advanced settings on page 5-47.

Concepts
• Semihosting on page 8-4
• Strategies used by debug hardware to debug cached processors on page 8-15
• Debugging applications in ROM on page 8-17.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-3
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.2 Semihosting
Semihosting enables the ARM processor target to make I/O requests to the computer running
the debugger. This means the target does not require a screen, keyboard, or disk during the
development period. These requests are made as a result of calls to C library functions, for
example, printf() and getenv().

8.2.1 See also

Tasks
• Post-mortem debugging on page 8-2
• Adding an application SVC handler when using debug hardware on page 8-5.

Concepts
• Cortex-M3 semihosting on page 8-7
• Strategies used by debug hardware to debug cached processors on page 8-15
• Debugging applications in ROM on page 8-17.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-4
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.3 Adding an application SVC handler when using debug hardware
Many applications require their own SVC handlers in addition to semihosting SVCs. To ensure
that the application SVC handler cooperates with the debug hardware semihosting mechanism,
use your debugger to:

1. Install the application SVC handler into the vector table.

2. Modify the value of SEMIHOST_VECTOR to point to a location that is only reached if your
handler does not recognize the SVC, or recognizes it as a semihosting SVC.

For example, a particular SVC handler might detect if it has failed to handle a SVC and branch
to an error handler. An example of a basic exception handler is shown in the following example.

Example 8-1 Basic SVC handler

 ; r0 = 1 if SVC handled
 CMP r0, #1 ; Test if SVC has been handled.
 BNE NoSuchSVC ; Call unknown SVC handler.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12, pc}^ ; Restore registers and return.

You can modify this code for use in conjunction with debug hardware semihosting as shown in
the following example.

Example 8-2 SVC handler with debug hardware link

 ; r0 = 1 if SVC handled
 CMP r0, #1 ; Test if SVC has been handled.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr_cf, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12, lr} ; Restore registers.
 MOVEQS pc, lr ; Return if SVC handled.

Semi_SVC
 MOVS pc, lr

You must then set up the SEMIHOST_VECTOR with the address of Semi_SVC. The instruction at this
address is never actually executed because the debug software returns directly to the application
after processing the semihosted SVC. Using a normal SVC return instruction ensures that the
application does not crash if the semihosting breakpoint is not set up.

If the application is linked with the semihosted ARM C library, and therefore uses the C library
startup code, you must change the contents of SEMIHOST_VECTOR before the application installs its
own handler, typically by setting a breakpoint in the main code. This is because, if
SEMIHOST_VECTOR is set to the fall-through part of the application SVC handler before the
application starts execution, the semihosted SVCs that are called by the library initialization can
trigger an unknown breakpoint error. At this point, the SVC vector has not yet had the
application handler written to it, and might still contain the software breakpoint bit pattern. This
triggers a breakpoint that the debug software does not know about, because the SEMIHOST_VECTOR
address has moved to a place that cannot currently be reached.

Note
 If semihosting is not used by your application, including the startup code, you can simplify this
process by setting SEMIHOST_ENABLED to zero.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-5
ID121610 Non-Confidential

Debugging with your debug hardware unit
You must take care when moving an application that previously ran in conjunction with the
Angel debug monitor onto a debug hardware system. On Angel debug monitor systems,
application SVC handlers are typically added by moving and adjusting the contents of the
Angel-installed SVC vector to another place, and installing the application SVC handler into the
SVC vector. This method does not apply to the debug software because there is no instruction
to move out of the SVC vector, and no code to jump to. Therefore, when moving an application
onto a debug hardware-based system, you must convert to the debug hardware way of installing
the application and semihosted SVC handlers.

8.3.1 See also

Concepts
• Cortex-M3 semihosting on page 8-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-6
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.4 Cortex-M3 semihosting
Because Cortex-M3 does not provide vector catch on SVC, and the vector table contains jump
addresses rather than instructions, semihosting cannot be supported using an SVC instruction.

As an alternative, semihosting is implemented using a specific software breakpoint that is
recognized as a semihosting break by the debugger. The breakpoint instruction opcode contains
an immediate 8-bit value. The C library uses the BKPT 0xAB opcode for semihosting. The
debugger can test for this opcode pattern to determine if the breakpoint was a semihosting
request or not.

When the semihosting break is executed, the semihosting call is processed in the normal way.
After processing, execution continues from the instruction that follows the software breakpoint.
The debugger does not stop on the breakpoint.

8.4.1 See also

Tasks
• Adding an application SVC handler when using debug hardware on page 8-5.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-7
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.5 Hardware breakpoints
Depending on implementation options, most ARM processors contain dedicated hardware
resources, such as ARM EmbeddedICE® logic, for matching against specific hardware events.
Your debugger enables you to configure these resources to implement instruction and data
breakpoints.

Note
 Data breakpoints are also sometimes referred to as watchpoints.

The resources available depend on the processor you are using. See the data sheet for your
processor for information.

Hardware breakpoints might also provide additional matching capabilities. Examples of this
include matching on an external signal, and distinguishing between privileged and
non-privileged accesses. The Set Address/Data Breakpoint dialog box displays the capabilities
of your hardware.

Hardware instruction breakpoints do not require the instruction in memory to be changed. This
means that they can be used to debug code in Flash and ROM, and can be used with
self-modifying code.

8.5.1 See also

Concepts
• Software instruction breakpoints on page 8-9
• Processor exceptions on page 8-10
• Breakpoints and the program counter on page 8-11
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12
• Problems setting breakpoints on page 8-14.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-8
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.6 Software instruction breakpoints
For processors that do not support hardware instruction breakpoints, or in cases where you have
used up all the available hardware breakpoint resources, you can use software instruction
breakpoints. Software breakpoints modify the instruction in memory to create a special value
that causes the processor to enter debug state when executed. The value written to memory
depends on the processor you are using. For ARM processors, one of the following schemes is
used, depending on the architecture and processor revision:

• An undefined instruction is written to memory, and a hardware breakpoint resource is
used to spot this instruction being executed. The processor enters debug state when the
hardware breakpoint unit spots the undefined instruction entering the execute pipeline
stage.

• An ARMv5 BKPT instruction is written to memory, and a hardware breakpoint resource is
used to spot the instruction being executed. The processor enters debug state when the
hardware breakpoint unit spots the BKPT instruction entering the execute pipeline stage.

• An ARMv5 BKPT instruction is written to memory. When this instruction is executed, the
processor automatically enters debug state.

Where a hardware breakpoint unit is used to spot software instruction breakpoints, only a single
hardware resource is used, no matter how many software instruction breakpoints are set. If you
have difficulty setting software instruction breakpoints, you might have to free up a hardware
breakpoint resource first.

Software breakpoints cannot be used to debug code in Flash or ROM, and can be unreliable in
self-modifying code.

Note
 When viewing memory or disassembly, debug hardware reports the actual contents of memory.
Prior to running, any software breakpoints are written to memory. When the processor halts, the
software breakpoints are removed from memory. On a number of processors, it is not possible
to access memory while running. This means that if you disconnect debug hardware from the
processor while the target is running, the breakpoints are left in memory. If the processor
subsequently executes one of the instructions, then (depending on the processor architecture)
the processor either stops at the software breakpoint or causes the processor to take an undefined
exception.

8.6.1 See also

Concepts
• Hardware breakpoints on page 8-8
• Processor exceptions on page 8-10
• Breakpoints and the program counter on page 8-11
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12
• Problems setting breakpoints on page 8-14.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-9
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.7 Processor exceptions
Depending on implementation options, most ARM processors provide dedicated hardware to
enter debug state when a predetermined event occurs.

Most recent ARM processors provide hardware for trapping exceptions. When enabled, the
effect is similar to placing a breakpoint on the selected vector table entry. This is called vector
catch. However:

• Some ARM processors, such as ARM7, do not provide vector catch hardware. For these
processors, debug hardware simulates vector catch using instruction breakpoints.

• For Cortex-M3, this is equivalent to putting a breakpoint at the target of the vector.
Cortex-M3 has a restricted set of vector catches available.

• If the exception vectors are in ROM, debug hardware must use hardware breakpoints to
simulate vector catch. This reduces the number of resources available for other purposes,
if the processor does not have vector catch support.

When the debug hardware simulates vector catch on earlier ARM processors that do not have
vector catch support, it uses a software breakpoint when the vector table is located in RAM.

You must take care when debugging through a system reset. Some hardware targets alter the
memory map after reset, so the location of in physical memory containing software breakpoint
might not be in the correct reset position. The following warning is output to the your debugger
console if debug hardware simulates reset vector catch using an instruction breakpoint:

Warning: A software breakpoint is being used to simulate reset vector catch.
This may fail to be hit if the memory is remapped when a reset occurs.

The exact behavior of the ARM vector catch hardware depends on the processor. ARM9
processors enter debug state only when the specified exception occurs. Other processors, such
as ARM11 or older processors that use a breakpoint, enter debug state whenever the instruction
at the exception vector is executed, regardless of whether the exception occurs or not.

8.7.1 See also

Concepts
• Hardware breakpoints on page 8-8
• Software instruction breakpoints on page 8-9
• Breakpoints and the program counter on page 8-11
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12
• Problems setting breakpoints on page 8-14.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-10
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.8 Breakpoints and the program counter
The following events describe the value of the program counter when a breakpoint is taken:

Hardware data breakpoints
The address of the program counter after hitting a hardware data breakpoint
depends on the processor being used.
For ARM processors, a skid of either one or two instructions occurs after a data
breakpoint is hit. This means that the instruction that generated the breakpoint,
and possibly the one after that, are both executed. The program counter shown in
your debugger might not be the address of the instruction that generated the
breakpoint.

Hardware instruction breakpoints
The address of the program counter after hitting a hardware instruction
breakpoint depends on the processor being used.
For ARM processors, no skid occurs after hitting a hardware breakpoint. This
means that the instruction that generated the breakpoint has not been executed,
and the program counter is set to this address.

Software instruction breakpoints
The address of the program counter after hitting a software breakpoint is always
the address of the breakpoint. Unless the instruction is a BKPT instruction, the
instruction that generated the breakpoint is not yet executed.

Processor events
The address of the program counter after a processor event is hit depends on the
processor being used. For ARM processors, vector catch hardware stops with the
program counter on exception vector, before the instruction at that address is
executed.

8.8.1 See also

Concepts
• Hardware breakpoints on page 8-8
• Software instruction breakpoints on page 8-9
• Processor exceptions on page 8-10
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12
• Problems setting breakpoints on page 8-14.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-11
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.9 Interaction between breakpoint handling in the debug hardware and your
debugger

The following describe the interaction between breakpoint handling in the debug hardware and
breakpoint handling in your debugger:

Break details or break capabilities
You can find out what hardware breakpoint resources are available by viewing the
break details or break capabilities in your debugger.

Memory maps
Your debugger enables you to define a memory map to describe the layout and
type of memory in your system. When you set a breakpoint, areas of memory that
are marked as read-only, such as Flash and ROM, automatically use hardware
instruction breakpoints. All other types of memory use software instruction
breakpoints by default.

Stepping When you step through code, the debugger usually sets a temporary breakpoint
on the destination address. If the code is in read-only memory, or if the software
breakpoint implementation requires hardware assistance, a hardware breakpoint
is used for this. If you are unable to step, you might have to free up a hardware
breakpoint resource.
Some processors, such as ARM9, provide dedicated single-step hardware. debug
hardware uses this hardware if it is available, but steps larger than a single
instruction might revert back to using breakpoints, to improve efficiency.

Note
 For ARM7, ARM9, ARM11 or Cortex-A8 processors, interrupts are disabled

when single-stepping with debug hardware. For the Cortex-M3 processor,
interrupts are enabled when single-stepping with debug hardware.
Interrupt behavior applies only to debug hardware single-instruction stepping.
Higher-level stepping depends on the strategy in your debugger, that is, whether
you have used the place Breakpoint and run method, or the multiple
single-instruction steps method.

Note
 When hardware single-step is used, debug hardware prevents the processor from

processing any pending interrupts.

Resource allocation
Debug hardware allocates hardware breakpoint resources as they are received,
rather than allocating all the resources at the same time when the debugging
session begins. Therefore, if you attempt to set a breakpoint when there are
insufficient resources available, debug hardware displays an error message as
soon as you try to set the breakpoint, rather than waiting until debugging begins.

8.9.1 See also

Concepts
• Semihosting on page 8-4
• Hardware breakpoints on page 8-8
• Software instruction breakpoints on page 8-9
• Processor exceptions on page 8-10
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-12
ID121610 Non-Confidential

Debugging with your debug hardware unit
• Breakpoints and the program counter on page 8-11
• Problems setting breakpoints on page 8-14.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-13
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.10 Problems setting breakpoints
If you have problems stepping or setting breakpoints, it might be because you have run out of
hardware breakpoint resources. To work around this, you can try freeing some hardware
breakpoint resources then repeating the action. Some examples of how you can free hardware
breakpoint resources include:

• disable any breakpoints that you do not require

• change hardware breakpoints to software breakpoints where possible

• disable vector catch if you are debugging an early processor, such as the ARM7TDMI,
and the vector table is in ROM

• disable semihosting if you are not using it.

8.10.1 See also

Concepts
• Hardware breakpoints on page 8-8
• Software instruction breakpoints on page 8-9
• Processor exceptions on page 8-10
• Breakpoints and the program counter on page 8-11
• Interaction between breakpoint handling in the debug hardware and your debugger on

page 8-12.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-14
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.11 Strategies used by debug hardware to debug cached processors
When debugging a cached processor, debug hardware uses the following strategies.

On debug entry
• Debug hardware forces Write-Through (WT) on processors that support

this debug feature.
• Debug hardware disables cache line fill on processors that support

disabling of this feature in debug.
• Debug hardware disables Translation Look-aside Buffer (TLB) loads on

processors that support disabling of this feature in debug.
• If data is read from cacheable memory, it is only read into the caches if, and

only if, disable linefill is not possible.
• TLB entries and caches remain enabled.

On data write
• If WT is possible, nothing cache-related is performed.
• If WT is not possible, the write depends on processor size and data size:

1. Debug hardware can write to memory with caches enabled, and then
write disabled, effectively simulating write through.

2. Debug hardware can clean and invalidate the Dcache and disable it.

Note
 The ARM940T processor requires that Code Sequences are enabled

to do this.

On restart into debug
• On processors that support the features, forced WT is removed, linefills are

re-enabled, and TLB loads are enabled. If, and only if, data has been
written, the Icache is invalidated. If, and only if, Dcache has been disabled,
then it is re-enabled.

Data writes that could cause the cache operations described include user accesses
using your debugger, downloads, and any software breakpoints present in the
system.

Note
 For the ARM940T processor you must configure the code sequence settings before attempting
to debug with caches enabled.

When the cache is enabled, the speed of semihosting decreases, because of the additional cache
maintenance overhead performed by the debugger.

8.11.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Semihosting on page 8-4
• Debugging applications in ROM on page 8-17.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-15
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.12 Considerations when debugging processors with caches enabled
When debugging a processor with caches enabled, you might have to provide the address of an
area of memory on the target that can be used exclusively by debug hardware. On some targets,
the debug software downloads code sequences to this area to perform various tasks, such as
cleaning the cache, and accessing the system registers. Debug hardware does not preserve the
contents of this area.

A code sequence area is only required for certain processors where the required operations
cannot be performed directly over JTAG. If debug hardware requires a code sequence area, and
one has not been enabled, errors are displayed within the debugger. For example:
• Error V28305 (Vehicle): Memory operation failed

• Warning: Code sequence memory area size error

• Unable to load code sequence into defined memory area.

Note
 The code sequence area must be 128 bytes long and in a non-cacheable, readable and writeable
area.

To set up a code sequence area, use the options for each specific processor in the RVConfig
utility. This provides access to configuration items for each processor for:
• enabling code sequences
• setting the address and size of the code sequence areas.

Note
 These settings might also be available in your debugger Registers view. Any settings modified
using the Registers view in your debugger are only modified for the duration of the debug
session. Any settings modified using the RVConfig utility are persistent until modified again.

8.12.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Semihosting on page 8-4
• Strategies used by debug hardware to debug cached processors on page 8-15
• Debugging applications in ROM on page 8-17.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-16
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.13 Debugging applications in ROM
Some of the issues involved with debugging applications in ROM using debug hardware are
described in the following:
• Debugging from reset on page 8-18
• Debugging systems with ROM at the exception vector on page 8-22.

8.13.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Semihosting on page 8-4
• Strategies used by debug hardware to debug cached processors on page 8-15.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-17
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.14 Debugging from reset
You can debug systems running in ROM. A typical embedded system has the application
programmed in non-volatile memory, such as ROM or Flash. When target hardware is powered
up, the application starts running. When connecting the debugger to a target already running the
application, the application stops at an arbitrary point in the code. The default behavior of the
debugger is to stop the target on connection. Loading the image symbols gives you source code
view of the current location.

This means that you can examine the state of the system and restart execution from the current
place. In some cases, this is sufficient. However, in many cases it is preferable to restart
execution of the application as if from power-on. There are three ways to do this:
• debugging with a simulated a reset
• debugging with a reset register
• debugging with a target reset.

When you debug code that is running from ROM, you must ensure that at least one breakpoint
unit remains available so that you can set breakpoints on code in ROM, because you cannot use
software breakpoints for this purpose. On a processor without vector catch hardware, you must
disable semihosting and vector catching as soon as possible after starting up the debugger. This
can reduce the chances of the debugger taking these units for its own use.

On ARM processors that use a breakpoint resource to implement software breakpoints, such as
the ARM7TDMI, you must remove all software breakpoints if you are out of breakpoint
resources. This enables you to place a single hardware breakpoint in ROM.

Another factor in debugging a system in ROM is that the ROM image does not contain any
debug information. When debugging, symbol or source code information is available by loading
the relevant information into the debugger from the ELF image on the host.

8.14.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Debugging with a simulated reset on page 8-19
• Debugging with a reset register on page 8-20
• Debugging with a target reset on page 8-21
• Debugging systems with ROM at the exception vector on page 8-22.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-18
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.15 Debugging with a simulated reset
You can, where supported, simulate a reset from within the debugger by setting:
• the pc to the address of the reset vector
• the CPSR to change into Supervisor mode with interrupts disabled.

This simulates the state of the ARM processor at power-on or reset, but it does not perform
post-reset tasks such as resetting the memory map, or initializing any target-specific features
such as peripheral registers. It is recommended that you modify these target-specific features to
resemble their startup state before executing the application again, if possible. You can automate
this procedure using the scripting facilities of your debugger.

8.15.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Debugging from reset on page 8-18
• Debugging with a reset register on page 8-20
• Debugging with a target reset on page 8-21
• Debugging systems with ROM at the exception vector on page 8-22.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-19
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.16 Debugging with a reset register
Where supported, some processors, particularly CoreSight ones such as the Cortex-M3, include
a reset register that can reset the processor without using the physical reset lines. In a
multi-processor system, this can be used to reset only the target processor and not the complete
system. This type of reset can be selected by setting the reset type to Ctrl_Reg.

8.16.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Debugging from reset on page 8-18
• Debugging with a simulated reset on page 8-19
• Debugging with a target reset on page 8-21
• Debugging systems with ROM at the exception vector on page 8-22.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-20
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.17 Debugging with a target reset
Depending on the design of the reset circuitry, you might be able to carry out a target reset of
the board. Two forms of reset are required on the board:
• A full power-on reset that resets everything on the board.
• A Reset button that resets your development platform depending on whether or not it is a

CoreSight system:
— For non-CoreSIght systems, everything on the board is reset except the

EmbeddedICE logic.The EmbeddedICE logic is the debug logic in the processor.
— In a CoreSight system, the nSRST (system reset) resets the entire design, except for

the debug subsystem and trace subsystem. This includes the debug logic from all
devices, debug and trace bus, access ports, and Debug Access Port (DAP).

Note
 The Reset button mentioned here must not be confused with the RESET button located on

the debug hardware unit itself.

If your target implements a Reset button that drives nTRST in addition to nSRST, then the
EmbeddedICE logic is reset along with the board, and the debugger might not be able to regain
synchronization. This design is not recommended.

If a vector catch is set on the reset vector (or on the start address of the reset code) and the
recommended reset circuit is used, when the target is reset, it halts on reset as required.

8.17.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Debugging from reset on page 8-18
• Debugging with a simulated reset on page 8-19
• Debugging with a reset register on page 8-20
• Debugging systems with ROM at the exception vector on page 8-22.

Reference

ARM® DSTREAM™ Setting-up the Target Hardware:
• The DSTREAM unit, ../com.arm.doc.dui0481b/CHDCJEFH.html.

ARM® DSTREAM™ System and Interface Design Reference:
• System Design Guidelines, ../com.arm.doc.dui0499b/Chdbdcid.html.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-21
ID121610 Non-Confidential

Debugging with your debug hardware unit
8.18 Debugging systems with ROM at the exception vector
When debugging processors without vector catch hardware and with ROM rather than RAM at
the exception vector, you must disable vector catching. This prevents debug hardware from
trying to set hardware breakpoints on the vector table.

The default setting is to enable, exception trapping on reset, prefetch abort, and data abort. On
a processor without vector catch hardware, three breakpoint resources are used in ROM.
Therefore, if a processor has three or fewer resources, you cannot debug applications running
on that processor.

8.18.1 See also

Tasks
• Post-mortem debugging on page 8-2.

Concepts
• Debugging with a simulated reset on page 8-19
• Debugging with a reset register on page 8-20
• Debugging with a target reset on page 8-21.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 8-22
ID121610 Non-Confidential

Chapter 9
Configuring debug hardware for GDB

The following topics describe the basic steps required to configure the debug hardware unit to a
state where you can begin debugging your image using the GNU Debugger (GDB):

• About configuring debug hardware for debugging with GDB on page 9-3

• Feature support when debugging with GDB on page 9-4

• Debugging modes for GDB on page 9-5

• Debug hardware TCP/IP port numbering on page 9-6

• DCC modes on page 9-7

• Building for standalone target platforms on page 9-8

• Methods of connecting from remote GDB sessions on page 9-9

• Connection methods for each debugging mode on page 9-10

• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11

• Connections to a target with a GDB stub (Target-GDB) on page 9-13

• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual
Ethernet) on page 9-15

• Connections to a target OS using gdbserver (GDBserver) on page 9-17

• Connections to a target OS using NFS (GDB-NFS) on page 9-19

• Preparing your debug hardware for remote GDB connections on page 9-21
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-1
ID121610 Non-Confidential

Configuring debug hardware for GDB
• Connecting to targets from GDB through debug hardware on page 9-22

• Setting DCC parameters on page 9-23

• DCC and interrupts on page 9-25

• Loading and booting a complete system on page 9-26

• rviload command syntax on page 9-28

• RVIahbload command syntax on page 9-30

• RVIvec command syntax on page 9-32

• Multiprocessor debugging with GDB and debug hardware on page 9-34.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-2
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.1 About configuring debug hardware for debugging with GDB
Your debug hardware provides functionality that extends the debugging features available in
GDB.

Note
 GDB does not directly support USB.

Note
 To find the latest information on GDB compatibility with debug hardware, see the debug
hardware Release Notes.

For information on GDB and Command Monitor error codes, see the ARM web site.

9.1.1 See also

Tasks
• Methods of connecting from remote GDB sessions on page 9-9.

Concepts
• Feature support when debugging with GDB on page 9-4
• Building for standalone target platforms on page 9-8
• Preparing your debug hardware for remote GDB connections on page 9-21
• Loading and booting a complete system on page 9-26
• Multiprocessor debugging with GDB and debug hardware on page 9-34.

Reference
• Debug hardware TCP/IP port numbering on page 9-6.

Other information
• ARM web site, http://www.arm.com.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-3
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.2 Feature support when debugging with GDB
Your debug hardware unit supports connections from remote GDB sessions over TCP/IP. These
GDB connections support all non-OS specific functionality.

9.2.1 Features supported

When using GDB, your debug hardware unit supports:
• full memory and register access
• run and stop
• software and hardware breakpoints and watchpoints
• target reset (restart)
• binary program downloading
• step-over-range
• single stepping.

9.2.2 Features not supported

When using GDB, debug hardware unit does not provide support for:
• threads (in start-stop debugging)
• debugging over the debug hardware USB port
• synchronized start and step on multi-processor systems.

9.2.3 See also

Concepts
• Debug hardware TCP/IP port numbering on page 9-6
• Building for standalone target platforms on page 9-8
• Methods of connecting from remote GDB sessions on page 9-9.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-4
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.3 Debugging modes for GDB
You can use the following debugging modes with GDB:

• Halt-mode debugging, where the target stops while you examine it.

• Monitor-mode debugging, where the target continually runs under control of monitor
software on the target. GDB communicates with the monitor using Virtual Ethernet/TTY
connections through the Debug Communications Channel (DCC).

9.3.1 See also

Concepts
• Feature support when debugging with GDB on page 9-4
• Building for standalone target platforms on page 9-8.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-5
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.4 Debug hardware TCP/IP port numbering
To use the debug hardware Command Monitor and debug your target with GDB, the debug
hardware unit uses the TCP/IP ports described in the following table:

9.4.1 See also

Tasks
• Connecting to targets from GDB through debug hardware on page 9-22.

Reference
• DCC modes on page 9-7.

Table 9-1 Debug hardware TCP/IP ports

Ports Description

4000 series This port range is used to connect to a target from GDB, and to perform
halt-mode debugging.
Each device on the JTAG scan chain, or behind a CoreSight DAP, is
allocated a TCP/IP port number for connection from GDB. Ports are
allocated in sequence, with port 4000 connected to the first device in the scan
chain. Synchronized start and step are not supported.

Note
 Any attempt to connect to a non-processor device fails, but the port number
is still reserved for that device.

5000 series This port range is used for Monitor-mode debugging and other Virtual
Ethernet/TTY mode connections.

Note
 To use these ports you must set the DCC mode to a non-zero value.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-6
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.5 DCC modes
If your target application communicates using DCC, you must configure the DCC mode. You
can set the following DCC modes:

Mode 0: raw DCC
Raw, unprocessed, data is fed to the client through the DCC register on the target.

Mode 1: redirected raw DCC
In this mode, the data is fed over TCP/IP ports starting at 5000. Data is sent from
the host to the target 4 bytes at a time. If fewer than 4 bytes are available, the data
is padded with 0 bytes until it is 4 bytes long. Data from the target to the host is
received 4 bytes at a time, and no padding or trimming is performed.

Note
 It is recommended that you use the Virtual Ethernet/TTY mode (mode 2).

However, if the Virtual Ethernet/TTY mode is unsuitable for your application,
then you can use mode 1 DCC but you must also implement a suitable
communications protocol.

Mode 2: Virtual Ethernet/TTY mode
Virtual Ethernet/TTY is used for providing virtual serial and Ethernet
connections to the target. As far as the debug host and the target are concerned,
Virtual Ethernet/TTY mode is a debug hardware feature that provides:
• A virtual Ethernet feature using the DCC channel and a collection of

software tools in debug hardware and the host PC. It enables TCP/IP to be
used to the target as though the target has an Ethernet port of its own.

• A virtual serial port feature using the DCC channel and a collection of
software tools in debug hardware and the host PC.

9.5.1 See also

Tasks
• Connecting to targets from GDB through debug hardware on page 9-22.

Concepts
• Setting DCC parameters on page 9-23
• DCC and interrupts on page 9-25.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• rvigdbconfig command syntax on page 9-27
• rviload command syntax on page 9-28.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-7
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.6 Building for standalone target platforms
If you are building for a standalone target platform (that is, without an operating system), the
precompiled C library of the GNU toolchain for ARM architectures assumes that a debug
monitor is resident in ROM.

If you are not using a debug monitor, Red Hat eCos/Redboot, or any other operating system, you
must provide the following components:

• Your own I/O routines and optionally a target GDB stub.

• The crt0.S source file (mandatory). This source file provides the C startup procedure that
is responsible for setting up the stack and heap, and for initializing C static and global
variables.

Note
 If you are using a debug monitor, Red Hat eCos/Redboot or other operating system, you must
provide at least these components and possibly a gdbserver.

Documentation on how to do this is readily available from the Internet.

9.6.1 See also

Concepts
• Feature support when debugging with GDB on page 9-4.

Reference
• Debug hardware TCP/IP port numbering on page 9-6.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-8
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.7 Methods of connecting from remote GDB sessions
The method you use to connect to a target depends on:
• the resources required by the target application (for example, an IP stack)
• the debugging facilities available on the target (for example, a GDB stub)
• whether or not your target has an embedded OS, such as Linux, that is running gdbserver

instances.

9.7.1 See also

Tasks
• Preparing your debug hardware for remote GDB connections on page 9-21
• Loading and booting a complete system on page 9-26
• Multiprocessor debugging with GDB and debug hardware on page 9-34.

Concepts
• About configuring debug hardware for debugging with GDB on page 9-3
• Connection methods for each debugging mode on page 9-10
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) on page 9-15
• Connections to a target OS using gdbserver (GDBserver) on page 9-17
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-9
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.8 Connection methods for each debugging mode
How you connect to a target determines the debugging mode. The following connection
methods are available for each debugging mode:

9.8.1 Halt-mode debugging

Halt-mode debugging is the simplest method of debugging a target with GDB. You directly
connect to debug hardware, that then controls the starting and stopping of the processor. This
method of connecting is subsequently referred to as an RVI-GDB connection.

9.8.2 Monitor-mode debugging

Monitor-mode debugging requires that your target application communicate with GDB using
the Debug Communications Channel (DCC) of an ARM architecture-based processor.
However, if your target application includes an Ethernet feature, you do not have to use DCC.
Different DCC modes are available depending on the requirements of your target.

The connection methods for Monitor-mode debugging are:

Target-GDB connections
Semi-transparent connections to GDB stubs. The GDB stub communicates with
the GDB client using the DCC channel as a serial port. The debug hardware unit
makes this connection available on a TCP/IP port to which the GDB clinet
connects. The GDB stub must be compiled into the target application.

Target-GDB-Virtual Ethernet connections
An extension to Target-GDB connections for standalone applications running an
IP stack. The GDB stub communicates with the GDB client using the DCC
channel as an Ethernet channel. The debug hardware unit makes this connection
available on a TCP/IP port to which the GDB client connects.

GDBserver connections
An alternative to Target-GDB-Virtual Ethernet connections where the target is
running gdbserver running under an operating system (OS).

GDB-NFS connections
Connections to the root filesystem on the target OS that is mounted over NFS. The
debug hardware unit acts as a bridge between the debug host and the target OS.

9.8.3 See also

Tasks
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) on page 9-15
• Connections to a target OS using gdbserver (GDBserver) on page 9-17
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.

Concepts
• DCC modes on page 9-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-10
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.9 Connections to a target without built-in GDB support (RVI-GDB)
These are connections to targets where no GDB stub has been built into the target application,
or when you want to perform halt-mode debugging. Connections of this type use the built-in
GDB protocol interpreter of debug hardware to control the CPU directly, and are referred to as
RVI-GDB connections. When you want to examine the internal state of the CPU (such as
registers, memory, and variables), the image on the target stops executing. After examining the
required state, you must start the image again. The following figure shows the configuration:

Figure 9-1 RVI-GDB connections

Note
 GDB does not support Semihosting over JTAG. Therefore, any prompts and messages that are
output by the application cannot be displayed in your debugger.

9.9.1 RVI-GDB Scenarios

Use the RVI-GDB connection method to:

• perform run and stop debugging of a single ARM processor

• perform run and stop debugging with GDB at the same time as debugging the application.
That is, for example, if connecting to a target with a GDB stub (Target-GDB connections),
or if your target application requires TCP/IP communication with the debug host
(Target-GDB-Virtual Ethernet connections).

Note
 When the image stops, so does the handling of interrupt routines. This might not always be
desirable when debugging a real-time system.

9.9.2 Prerequisites

To use the RVI-GDB connection method, it is recommended that you compile your target
application using a GNU toolchain for ARM architectures.

9.9.3 Procedure

If your application does not have GDB support linked-in, you can use the GDB protocol built
into the debug hardware unit to debug your application. However, this controls the CPU directly,
and the CPU stops whenever you want to examine its internal state.

To debug an application through a RVI-GDB connection:

1. Power-up your target hardware and debug hardware unit.

GDB protocolGDB

telnet

Debug unitDebug host

ApplicationGDB protocol
interpreter

4000, 4001,...

Configuration
Mechanism

Set up JTAG
scan chain

JTAG
run control

Target
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-11
ID121610 Non-Confidential

Configuring debug hardware for GDB
2. Configure the processor using rvconfig, using either automatic or manual configuration.
Save the rvc file in a convenient location.

3. Run rvigdbconfig, specifying the rvc file that was created in step 2: rvigdbconfig –f
rvi.rvc

4. Start GDB, load the symbols if required, and connect to the first processor (using port
4000 of debug hardware in this example):
arm-elf-gdb(gdb) file demo.elf
(gdb) target remote rvi5:4000
Remote debugging using rvi5:4000
0x00000000 in $a ()
(gdb)

GDB is now connected to the processor, and an image can be loaded and debugged.

Note
 To load and boot a complete system, use the rviload utility.

5. Set up any breakpoints or other debugging features, then run the application. Debug your
application in the usual way.

9.9.4 See also

Tasks
• Debug hardware TCP/IP port numbering on page 9-6
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) on page 9-15
• Connections to a target OS using gdbserver (GDBserver) on page 9-17
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.

Reference
• Connection methods for each debugging mode on page 9-10
• rvigdbconfig command syntax on page 9-27.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-12
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.10 Connections to a target with a GDB stub (Target-GDB)
These are connections to a target that is running an application with a GDB stub, and are referred
to as Target-GDB connections. The GDB stub enables the target application to communicate
with a host application through debug hardware, using the DCC of an ARM architecture-based
processor. The DCC carries the GDB protocol packets between the target and the remote GDB
session over the TCP/IP ports 5000, 5001,... as shown in the following figure:

Figure 9-2 Target-GDB connections

9.10.1 Target-GDB Scenarios

Use the Target-GDB connection method to:
• debug a target system that does not have an OS
• debug a target system with an OS that supports GDB.

9.10.2 Prerequisites

To use the Target-GDB connection method, it is recommended that you compile the DCC driver
and GDB stub into your target application using a GNU toolchain for ARM architectures. You
can either:
• link the example GDB stub into your target application or operating system
• port your existing serial GDB stub to use the DCC driver.

Note
 On the GDB connection to the target, it is recommended that you enable DCC and Virtual
Ethernet/TTY mode before starting the processor.

9.10.3 Procedure

If your application includes a target-resident GDB stub, it can communicate over DCC.

To debug an application using a Target-GDB connection:

1. Power-up your target hardware and debug hardware unit.

2. Configure the processor using rvconfig, using either automatic or manual configuration.
Save the rvc file in a convenient location.

3. Run rvigdbconfig, specifying the rvc file that was created in step 2, and the appropriate
DCC mode, for example mode 2: rvigdbconfig –f rvi.rvc -d 2:2

4. Start GDB, load the symbols if required, and connect to the second processor (for
example) to load and run your application in the usual way. This example uses port 4001
of debug hardware:

Telnet
(Serial over IP) DCC

Application

GDB stub

5000, 5001,...
GDB

Debug host
Debug unit

Configuration
Mechanism

Virtual TTY

Set up JTAG
scan chain

Target
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-13
ID121610 Non-Confidential

Configuring debug hardware for GDB
arm-elf-gdb(gdb) file demo.elf
(gdb) target remote rvi5:4001
Remote debugging using rvi5:4001
0x00000000 in $a ()
(gdb)
(gdb) load demo.elf
Loading section .vectors, size 0x30 lma 0x0
Loading section .text, size 0x1dbcc lma 0x8000
Loading section .rodata, size 0x1bcb4 lma 0x25bcc
Loading section .data, size 0xc84 lma 0x41980
Start address 0x8000, load size 238900
Transfer rate: 106177 bits/sec, 318 bytes/write.
(gdb)
(gdb) c
Continuing.

5. Start another GDB session to debug the image in the usual way, using (in this example)
port 5001, the first available port of debug hardware:
(gdb) set remotetimeout 10
(gdb) file myprogram
(gdb) target remote rvi5:5001

Note
 You only have to perform steps 1 to 3 once at the start. You can perform steps 4 and 5 as often
as required.

9.10.4 See also

Tasks
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) on page 9-15
• Connections to a target OS using gdbserver (GDBserver) on page 9-17
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.

Reference
• Connection methods for each debugging mode on page 9-10
• rvigdbconfig command syntax on page 9-27.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-14
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.11 Connections to a target GDB stub using Virtual Ethernet/TTY mode
(Target-GDB-Virtual Ethernet)

If your target application requires TCP/IP communication with the debug host, you can connect
to the target using Virtual Ethernet/TTY mode. Connections of this type are referred to as
Target-GDB-Virtual Ethernet connections. This method is an extension to that used for
connections to a target running an application with a GDB stub. The following figure shows an
example:

Figure 9-3 Target-GDB-Virtual Ethernet connections

In this method, debug hardware provides a network bridging feature to targets, and enables a
target with only a JTAG connection to debug hardware to have access to the same network
resources available to debug hardware. This works by intercepting IP packets on the network
and examining them, and those packets that are addressed to the target are then sent over DCC
alongside the normal GDB protocol. A driver is required on the target to interface the DCC
channel to the protocol stack of the target, making the bridged network connection appear as an
Ethernet device on the target. IP is the only network layer protocol supported.

Note
 To reduce the load on the DCC and JTAG connection, broadcast packets are not sent to the
target.

9.11.1 Target-GDB-Virtual Ethernet Scenario

Use the Target-GDB-Virtual Ethernet connection method to communicate with a standalone
application that has a TCP/IP stack. For example, an application might provide a web server that
serves web pages to the host.

9.11.2 Procedure

To use the Target-GDB-Virtual Ethernet connection method:

• It is recommended that you compile the DCC driver and GDB stub into your target
application using a GNU toolchain for ARM® architectures. The DCC driver is available
as a Linux OS download from the ARM products and solutions website.

Note
 On the GDB connection to the target, you must enable DCC and Virtual Ethernet/TTY

mode before starting the processor.

• The target application must be running a TCP/IP stack.

Bridged Ethernet
(IP) DCC

(IP over DCC)

Application

GDB stub

GDB

Debug host
Debug unit

Configuration
Mechanism

Virtual
Ethernet

Set up JTAG
scan chain

Target
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-15
ID121610 Non-Confidential

Configuring debug hardware for GDB
• debug hardware acts as a network bridge between the target processor and the host PC
using a virtual Ethernet link. The target must have its own IP address that is either fixed
or obtained from a DHCP server, and that appears on the virtual Ethernet as an
independent host.

9.11.3 See also

Tasks
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connections to a target OS using gdbserver (GDBserver) on page 9-17
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.

Concepts
• Connection methods for each debugging mode on page 9-10
• Setting DCC parameters on page 9-23.

Other information
• ARM downloads, http://www.arm.com/products
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-16
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.12 Connections to a target OS using gdbserver (GDBserver)
If your target application requires TCP/IP communication with the debug host, you must
connect to the target using bridged Ethernet. Connections of this type are referred to as
GDBserver connections. This method is an extension to that used for connections to a target
running an application with a GDB stub. The following figure shows an example:

Figure 9-4 GDBserver connections

In this method, IP packets can be carried over the same link alongside the normal GDB protocol.

9.12.1 GDBserver Scenario

Use the GDBserver connection method to debug an application on a target that has an embedded
OS, such as Linux, that supports independent processes. In this case you can run GDB server
(gdbserver) instances. The GDB server can have TCP/IP connections to the debug host that is
running GDB. The DCC driver is available as a Linux OS download from the ARM web site.

9.12.2 Prerequisites

To use the GDBserver connection method:

• On the GDB connection to the target, you must enable DCC and Virtual Ethernet/TTY
mode before starting the processor.

• The target OS must be running a TCP/IP stack and gdbserver.

• debug hardware acts as a network bridge between the target processor and the host PC
using a virtual Ethernet link. The target must have its own IP address that is either fixed
or obtained from a DHCP server, and that appears on the virtual Ethernet as an
independent host.

9.12.3 Procedure

If your application uses an IP stack, it can communicate over DCC through a bridged Ethernet
connection.

To debug an application using a GDBserver connection:

1. Power-up your target hardware and debug hardware unit.

2. Download and boot the target using the rviload utility.

3. When the Linux kernel has finished booting, start the gdbserver as follows:
~ # gdbserver localhost:portnum filename

Application

GDBserver

OS

Debug host

GDB
Bridged Ethernet

(IP)

Debug unit

Configuration
Mechanism

Virtual
Ethernet

Set up JTAG
scan chain

DCC
(IP over DCC)

Target
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-17
ID121610 Non-Confidential

Configuring debug hardware for GDB
The TCP/IP port number you specify here is the port number you must use with the GDB
target remote command from subsequent GDB sessions. Also, make sure the port number
is not in use by another service.

9.12.4 See also

Tasks
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual

Ethernet) on page 9-15
• Connections to a target OS using NFS (GDB-NFS) on page 9-19.

Concepts
• Connection methods for each debugging mode on page 9-10
• Setting DCC parameters on page 9-23
• Loading and booting a complete system on page 9-26.

Other information
• ARM downloads, http://www.arm.com/products
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-18
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.13 Connections to a target OS using NFS (GDB-NFS)
This is useful for developing software on deeply embedded systems, and also for debugging
brand new targets where only the CPU and RAM are initially known to work. Connections of
this type are referred to as GDB-NFS connections. The following figure shows the GDB-NFS
connection method:

Figure 9-5 GDB-NFS connections

For example, the minimum I/O support that Linux requires is a system console and a root file
system. You can connect the console to a GDB command-line console and, with the appropriate
driver, you can mount the root file system over NFS with debug hardware acting as a bridge.
Alternatively, you might have a file system and kernel loaded into memory and booted, and an
NFS file system mounted to be shared later.

Note
 This network connection is not as fast as an office LAN, because of the limited bandwidth of
DCC.

9.13.1 Procedure

If your target has a complete operating system, you can mount a file system over NFS. In this
case, debug hardware acts as a bridge.

To debug a target using a GDB-NFS connection:

1. Power-up your target hardware and debug hardware unit.

2. Load the Linux kernel and uBoot image using rviload. For example:
./rviload --host=rvi5 -j1000000 -mVEC -a0 7fc0:uImage 1000000:u-boot.bin

Press Return. Messages appear showing u-boot loading and running the Linux kernel.

Note
 This is similar for rviload.exe for MSDOS users.

3. Mount the directory exported by NFS using the following command:
~ # mount -t nfs -n client_IP_address:/exported_directory /mnt

9.13.2 See also

Tasks
• Connections to a target without built-in GDB support (RVI-GDB) on page 9-11
• Connections to a target with a GDB stub (Target-GDB) on page 9-13

Bridged EthernetGDB

Debug host

Application

OS

filesystem

5000, 5001,...

Debug unit

telnet rviload

telnet Virtual
Ethernet

Configuration
Mechanism

Target

DCC
(IP over DCC)
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-19
ID121610 Non-Confidential

Configuring debug hardware for GDB
• Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual
Ethernet) on page 9-15

• Connections to a target OS using gdbserver (GDBserver) on page 9-17.

Concepts
• Connection methods for each debugging mode on page 9-10
• Loading and booting a complete system on page 9-26
• rviload command syntax on page 9-28.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-20
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.14 Preparing your debug hardware for remote GDB connections
To prepare debug hardware to accept remote GDB connections and be able to communicate with
a GDB session, you must:

1. Create a debug hardware configuration file for your develpoment system.

2. Use the rvigdbconfig command-line utility and specify:
• the debug hardware configuration file you created in step 1
• DCC parameters, if necessary.

3. Use GDB to:
• load the image symbols if required
• connect to the processor.
You might have to specify a port number if your system has multiple processors.

9.14.1 See also

Tasks
• Methods of connecting from remote GDB sessions on page 9-9
• Connecting to targets from GDB through debug hardware on page 9-22
• Setting DCC parameters on page 9-23.

Concepts
• About configuring debug hardware for debugging with GDB on page 9-3
• Loading and booting a complete system on page 9-26
• Multiprocessor debugging with GDB and debug hardware on page 9-34.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7
• rvigdbconfig command syntax on page 9-27.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-21
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.15 Connecting to targets from GDB through debug hardware
To connect to a target from GDB, you must configure debug hardware to recognize your target
devices. You do this by using rvigdbconfig to configure debug hardware with the scan chain
details. GDB is then connected to the processor.

To connect to a target from GDB:

1. Power-up your target hardware and debug hardware unit.

2. Launch RVConfig, and configure the processor.

3. Run rvigdbconfig, specifying the appropriate rvc file:
rvigdbconfig –f rvi.rvc

4. Start GDB, load the symbols if required, and connect to the first processor (using port
4000 of your debug hardware in this example):
arm-elf-gdb(gdb) file demo.elf
(gdb) target remote rvi5:4000
Remote debugging using rvi5:40000x00000000 in $a ()
(gdb)

GDB is now connected to the processor, and an image can be loaded and debugged.

9.15.1 See also

Tasks
• Starting the debug hardware configuration utilities on page 2-3
• Setting DCC parameters on page 9-23.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7
• rvigdbconfig command syntax on page 9-27.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-22
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.16 Setting DCC parameters
Ethernet bridging works by examining incoming packets at debug hardware, then deciding
which are destined for debug hardware itself and which are destined for the target. To do this,
debug hardware must know the IP address, subnet mask and default gateway parameters for the
target. These parameters are normally determined through DHCP, where the target asks for a
configuration, and one is supplied by a server over the network. In this case, debug hardware is
able to intercept the incoming DHCP packet containing the parameters and configure itself
appropriately. It is, however, possible to configure a target with a static IP address. In this case
there is no DHCP transaction to intercept, and debug hardware has no way of determining the
target configuration. You must set these parameters in debug hardware for correct operation.

You can configure DCC Ethernet bridging with the rvigdbconfig command, and you must set
the appropriate parameter when using DCC mode.

If you use rviload, you must set the DCC mode to either VEC or VEP.

Note
 When Ethernet bridging is running, normal LAN services are accessible (including DHCP and
NFS).

9.16.1 Examples of setting DCC parameters

rvigdbconfig –f rvi.rvc -d 1:2

sets device 1 (the first device on the scan chain) to DCC mode 2.

Additional devices are configured in a similar way. For example:

rvigdbconfig –f rvi.rvc -d 1:2 -d 2:2

configures devices 1 and 2 to mode 2.

The IP parameters for static IP configurations are set up in the following way:

rvigdbconfig –f rvi.rvc –d 1:2 –s 1:10.0.0.10:255.255.255.0:10.0.0.1

This configures device 1 to use DCC mode 2 with IP address 10.0.0.10, subnet mask
255.255.255.0, and default gateway 10.0.0.1. This format can be used to configure multiple
processors if required. For example:

rvigdbconfig –f rvi.rvc –d 1:2 –d 2:2 –s 1:10.0.0.10:255.255.255.0:10.0.0.1 –s
2:10.0.0.11:255.255.255.0:10.0.0.1

9.16.2 See also

Tasks
• Configuring a target processor for virtual Ethernet on page 5-51
• Connections to a target with a GDB stub (Target-GDB) on page 9-13
• Connecting to targets from GDB through debug hardware on page 9-22.

Concepts
• DCC and interrupts on page 9-25.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7
• rvigdbconfig command syntax on page 9-27
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-23
ID121610 Non-Confidential

Configuring debug hardware for GDB
• rviload command syntax on page 9-28.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-24
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.17 DCC and interrupts
The use of DCC interrupts has significant speed implications when using Virtual Ethernet/TTY
mode. If possible, you must tie DCC interrupts into the interrupt system of the target and be able
to enable and disable the read and write interrupt individually.

Note
 This is a configuration item that you must select when configuring the kernel, when using an
ARM driver.

debug hardware uses JTAG to control debug operations, and JTAG is used to send and receive
data over DCC. debug hardware polls the target JTAG for status:

• If interrupts are used, the target is interrupted when data is written to the DCC register or
read from it. This enables the target to deal quickly with the data, and continue normal
processing.

• If interrupts are not available, the target must regularly poll the DCC register for any new
data. This means that the target wastes time checking the register for data when none is
present. Subsequent data is only discovered at the next poll.

If debug hardware finds that there is data to be transferred into or out of DCC, it attempts to
transfer as many words as possible in one burst, up to a predefined limit. However, if the target
has not sent more data or emptied its transfer register, debug hardware breaks out of its burst
and begins polling the execution status and DCC.

9.17.1 See also

Tasks
• Connecting to targets from GDB through debug hardware on page 9-22
• Setting DCC parameters on page 9-23.

Reference
• Debug hardware TCP/IP port numbering on page 9-6
• DCC modes on page 9-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-25
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.18 Loading and booting a complete system
You can load and boot a complete system at a command-line without having to run GDB or a
supported debugger to control the debug hardware unit.

To load and boot a complete system at the command-line use the following commands:
• rviload

• RVIahbload

• RVIvec.

9.18.1 See also

Tasks
• Methods of connecting from remote GDB sessions on page 9-9
• Preparing your debug hardware for remote GDB connections on page 9-21.

Concepts
• About configuring debug hardware for debugging with GDB on page 9-3
• Multiprocessor debugging with GDB and debug hardware on page 9-34.

Reference
• rviload command syntax on page 9-28
• RVIahbload command syntax on page 9-30
• RVIvec command syntax on page 9-32.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-26
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.19 rvigdbconfig command syntax
rvigdbconfig enables you to configure your debug hardware for debugging with GDB.

9.19.1 Syntax

rvigdbconfig [-h] [-v] [-d DEVICE:MODE] [-s DEVICE:IP-CONFIG] [-f RVC-FILE]

-d DEVICE:MODE
Set the DCC mode for the device DEVICE to MODE, where MODE can be one of:
0 None (raw DCC)
1 Redirected raw DCC
2 Virtual Ethernet over DCC.

-f RVC-FILE Load scan chain configuration from RVC-FILE.

-h Display the command help.

-s DEVICE:IP-CONFIG
Set the DCC mode for the device DEVICE to MODE, where IP-CONFIG is of the form
ip-address:subnet-mask:default-gateway.

-v Print progress messages.

9.19.2 Examples

The following are examples of how to use rvigdbconfig:

rvigdbconfig –f rvi.rvc -d 1:2
Sets device 1 (the first device on the scan chain) to DCC mode 2.

rvigdbconfig –f rvi.rvc -d 1:2 -d 2:2
Configures devices 1 and 2 to mode 2.

rvigdbconfig –f rvi.rvc –d 1:2 –s 1:10.0.0.10:255.255.255.0:10.0.0.1
Sets up the IP parameters for static IP configurations. This configures device 1 to
use DCC mode 2 with IP address 10.0.0.10, subnet mask 255.255.255.0, and
default gateway 10.0.0.1.

rvigdbconfig –f rvi.rvc –d 1:2 –d 2:2 –s 1:10.0.0.10:255.255.255.0:10.0.0.1 –s
2:10.0.0.11:255.255.255.0:10.0.0.1

Sets up IP parameters for multiple processors.

9.19.3 See also

Tasks
• Setting DCC parameters on page 9-23.

Reference
• DCC modes on page 9-7.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-27
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.20 rviload command syntax
rviload enables you to load a given binary file onto the target board through a specified debug
hardware unit.

9.20.1 Syntax

rviload [options]... address:file [address:file]...

address:file A raw binary file file to be loaded at the target memory address address in
hexadecimal.

--autoconfig=DELAY
Autoconfigure the scan chain and then wait the number of seconds specified by
DELAY.
Option synonym: -a DELAY

--check Check memory as it is being written.
Option synonym: -c

--devnum=DEVNUM
The JTAG scan chain device number (default 1). Device 0 refers to the debug
hardware unit, so you can only specify devices greater than 0.
Option synonym: -d DEVNUM

--help Display the command help.
Option synonym: -h

--host=HOST
The host IP address/name of the debug hardware unit.
Option synonym: -H HOST

--jtagclock
The JTAG clock speed in Hz, 0==‘RTCK’ (default 10MHz).
Option synonym: -s

--jump=JUMPTO
Start executing from this (hex) address after loading.
Option synonym: -j JUMPTO

--dccmode=MODE
Enable debug communications in the particular MODE, and must be one of the
following:
DCC Raw DCC through client. Raw (unprocessed) data exactly as it exited

the DCC register on the target, and is fed to the client.
DCP Raw DCC through TCP/IP port range from 5000. Raw data fed to

TCP/IP port in the port range specified.
VEC Virtual Ethernet/TTY with tty channel through client.
VEP Virtual Ethernet/TTY with tty channel through port range from 5000.
The DCC mode for rviload is specified by using a three-letter mode name such as
VEP or VEC, whereas the DCC mode for rvigdbconfig is specified by a mode
number such as 0, 1 or 2.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-28
ID121610 Non-Confidential

Configuring debug hardware for GDB
Option synonym: -m MODE

--page=PAGE
The target memory page number.
Option synonym: -p PAGE

--quiet Do not print any messages.
Option synonym: -q

--rule=RULE
Target rule code.
Option synonym: -r RULE

9.20.2 Examples

To use the rviload utility from a Cygwin bash or Red Hat Linux shell, enter:

$ rviload [option]... address:file [address:file]...

For example:

rviload --host=192.168.1.200 -s0 -j7300000 -mVEC -a0 7300000:C:\DEMOS\
Linux_RVI_DCC\vp-boot.bin

9.20.3 See also

Tasks
• Setting DCC parameters on page 9-23.

Reference
• RVIahbload command syntax on page 9-30
• RVIvec command syntax on page 9-32.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-29
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.21 RVIahbload command syntax
RVIahbload uses an access port that is bridged to the system bus, which might be Advanced
High-performance Bus (AHB) or Advanced Extensible Interface (AXI). Although this direct
route has speed improvements, there are additional compliations to consider. For example,
loading is performed in the physical memory map.

You specify the files to load in the same way as for rviload, that is, by using -bin addr:binary
file or you can specify ELF files which load to a fixed location (--elf file.elf). The debug
unit to which you want to connect is specified by a .rvc file, and you cannot supply an address
or hostname as in the case of rviload. When the file has downloaded, you can use the -jump
option to start the target executing. For this to succeed, however, the device must support
execution.

9.21.1 Syntax

RVIahbload [options]

--bin address:file
Load binary image file at specified (hex) address.
Option synonym: -i address:file

--bus busnum
Override the detected AHB bus to use for the download.
Option synonym: -b busnum

--config RVCfile
Provides the full path of the .rvc config file to use.
Option synonym: -f RVCfile

--devnum device
The device to use for the download. Default 1.
Option synonym: -d device

--elf filename
Elf file to load. Cannot be supplied at same time as -i.
Option synonym: -e filename

--help Display the command help.
Option synonym: -h

--jump address
Start executing from this (hex) address after loading if supported by device.
Option synonym: -j address

9.21.2 Examples

The following are examples of how to use RVIahbload:

RVIahbdownload -f rvi.rvc -i 8000:myprog.bin -d3 -b1 -j 0x8000
This loads the binary file myprog.bin to address 0x8000 on device 3 using bus 1
and starts executing it.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-30
ID121610 Non-Confidential

Configuring debug hardware for GDB
RVIahbdownload --file rvi2.rvc --elf my.elf
This loads the ELF file my.elf to the target, selecting the AHB bus by default.

9.21.3 See also

Reference
• rviload command syntax on page 9-28
• RVIvec command syntax on page 9-32.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-31
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.22 RVIvec command syntax
RVIvec enables you to make a virtual Ethernet connection to a device. RVIvec uses a passive
connection that it can connect to the device at the same time as a debugger or other application,
as long as both applications use an identical .rvc file. The virtual Ethernet connection is then
maintained, as long as RVIvec is still running, even after the debugger that started the device
executing has quit.

9.22.1 Syntax

RVIvec [options]

--config RVCfile
Provides the full path of the .rvc config file to use.
Option synonym: -f RVCfile

--devnum device
The device to connect to. Default 1.
Option synonym: -d device

--help Display the command help.
Option synonym: -h

--jump address
Optional. Start processor from this (hex) address.

Note
 This means that a passive connection cannot be used, so this option prevents a

connection while a debugger or other application is running.

Option synonym: -j address

--mode mode
As with rviload, mode can be either VEC or VEP. The default is VEC.
Option synonym: -m mode

--verbose
Optional. This option means that RVIvec polls for any asynchronous messages that
are returned from the debug hardware unit, and displays them to stdout.
Option synonym: -v

9.22.2 Examples

Typically, an image is first loaded onto a target (using rvd, rviload or rviahbload) and has started
executing. For example:

RVIvec -f rvi.rvc

RVI virtual ethernet utility.Started channel 0x504344.Virtual ethernet enabled.Hit
return to quit.

9.22.3 See also

Reference
• rviload command syntax on page 9-28
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-32
ID121610 Non-Confidential

Configuring debug hardware for GDB
• RVIahbload command syntax on page 9-30.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-33
ID121610 Non-Confidential

Configuring debug hardware for GDB
9.23 Multiprocessor debugging with GDB and debug hardware
Debug hardware is capable of simultaneously and synchronously debugging multiple targets.
However, GDB does not support multiprocessor debugging directly.

Note
 Although multiprocessor debugging is possible using GDB, it is recommended that you debug
multiple processors using higher level tools.

9.23.1 How connections to multiple processors are allocated

When you make connections to multiple target processors, the connections on ports 5000,
5001,... are allocated by debug hardware, that is, redirected virtual DCC is allocated a port for
each device in a similar way to GDB halt-mode debugging. The port range starts from port 5000,
so virtual Ethernet or raw redirected DCC for the first device appears on port 5000, the second
device on port 5001, and this continues in the same way.

9.23.2 Considerations when debugging multiple targets with GDB

Be aware of the following if you are debugging multiple targets with GDB:

• Multiprocessor debugging with GDB requires that you open multiple command windows
(such as Xterms). You must have one GDB session for each target processor to which you
want to connect.

• If you have multiple targets on the debug hardware scan chain, then:
— the target processors are numbered consecutively, starting at one
— the available bandwidth over DCC is shared between all target processors
— communications to all target processors are through a single JTAG chain.

9.23.3 See also

Tasks
• Methods of connecting from remote GDB sessions on page 9-9
• Preparing your debug hardware for remote GDB connections on page 9-21
• Loading and booting a complete system on page 9-26.

Concepts
• About configuring debug hardware for debugging with GDB on page 9-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 9-34
ID121610 Non-Confidential

Chapter 10
Troubleshooting your debug hardware unit

If you encounter problems when attempting to connect to a debug hardware unit or upgrade the
firmware, see the following topics:
• Multiple programs attempting to scan on page 10-2
• USB server not accessible on page 10-3
• Connection times out on page 10-4
• Other active connections on page 10-5
• A debug hardware unit is not listed on page 10-6
• Auto Configure button is disabled in RVConfig on page 10-7
• Remove button is disabled in RVConfig on page 10-8
• Troubleshooting firmware upgrade installations on page 10-9
• Troubleshooting autoconfigation of a scan chain on page 10-11.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-1
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.1 Multiple programs attempting to scan
Only one program on each host computer can scan the TCP/IP network or USB ports for
available debug hardware units. If another configuration utility is scanning, the following error
message is displayed:

Figure 10-1 Error message when another program is scanning

You must stop the other configuration utility from scanning. To do this, click the Scan button,
or select Stop Scan from the RVI menu in the configuration utility that you want to stop
scanning.

10.1.1 See also

Tasks
• Scanning for available debug hardware units on page 2-5.
• Connecting to a debug hardware unit on page 2-8.

Concepts
• USB server not accessible on page 10-3
• Connection times out on page 10-4
• Other active connections on page 10-5.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-2
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.2 USB server not accessible
The following error message is displayed if a communication error occurs between RVConfig
and the USB server application:

Figure 10-2 Error message when no USB devices present

The USB server might not be accessible because:

• The USB driver did not load. In this case you might have to reinstall the host software.

• The USB server application has stopped working. In this case, kill the USB server process
and restart RVConfig.

Note
 If you do not want to use a USB connection, then use the debug hardware unit over a TCP/IP
connection. If you have not yet done so:

1. Connect the unit to your network.

2. Configure the network settings for the unit.

10.2.1 See also

Tasks
• Determining the correct network settings on page 3-3
• Configuring the network settings for a debug hardware unit on page 3-8.

Concepts
• About configuring network settings on page 3-2
• Multiple programs attempting to scan on page 10-2
• Connection times out on page 10-4
• Other active connections on page 10-5.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-3
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.3 Connection times out
The default timeout for establishing a TCP/IP connection is five seconds. If you repeatedly get
timeouts when attempting to connect to a debug hardware unit, you can change this setting. To
do this:

1. Create the environment variable RVI_COMMS_CONNECT_TIMEOUT if it does not already exist.

2. Set the value of this variable to the timeout that you want, in seconds. This must be an
integer in the range 0-120.

For details of how to create and set an environment variable, see the documentation for the
operating system that is supplied with your host computer.

Note
 Be aware that TCP/IP latency might affect the response times and performance of your
debugger.

10.3.1 See also

Concepts
• Multiple programs attempting to scan on page 10-2
• USB server not accessible on page 10-3
• Other active connections on page 10-5.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-4
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.4 Other active connections
If you connect to a debug hardware unit that has other active connections, the following error
message is displayed:

Figure 10-3 Error when other connections are active

If you continue, the changes that you make might interfere with the correct operation of these
configuration utilities. Do one of the following:

• ensure that the other configuration utilities are disconnected, then click Yes to continue
using the configuration utility

• click No to stop using the configuration utility, and try again later.

10.4.1 See also

Concepts
• Multiple programs attempting to scan on page 10-2
• USB server not accessible on page 10-3
• Connection times out on page 10-4.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-5
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.5 A debug hardware unit is not listed
A debug hardware unit might not be listed in the debug hardware utility for the following
reasons:

• The unit is on a different subnet to your PC. In this case, obtain either the IP address or
the host name of the unit and enter the value in the IP Address / Host Name field of the
utility you are using.

• The unit has not yet been configured for use on a network. Configure the network settings
if you have provilege to do so. Otherwise, contact the person responsible for the unit.

• The unit did not boot correctly. Reboot the unit. If the unit is on the same subnet as your
PC, it appears in the list of units when the reboot is successful.

10.5.1 See also

Tasks
• Determining the correct network settings on page 3-3
• Configuring the network settings for a debug hardware unit on page 3-8.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-6
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.6 Auto Configure button is disabled in RVConfig
The Auto Configure button is disabled in RVConfig when you have a platform assigned to your
debug hardware configuration.

If you want to autoconfigure the scan chain again:

1. Click Clear Platform.

2. Click Auto Configure.

10.6.1 See also

Tasks
• Autoconfiguring a scan chain on page 5-11
• Clearing a platform assignment from a debug hardware configuration on page 5-44.
• Adding devices to the scan chain on page 5-12.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-7
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.7 Remove button is disabled in RVConfig
The Remove button is disabled in RVConfig when you have a platform assigned to your debug
hardware configuration.

If you want to remove a device from the scan chain:

1. Click Clear Platform.

2. Either:
• autoconfigure the scan chain again
• manually add only those devices you want to keep.

10.7.1 See also

Tasks
• Autoconfiguring a scan chain on page 5-11
• Clearing a platform assignment from a debug hardware configuration on page 5-44.
• Adding devices to the scan chain on page 5-12.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-8
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.8 Troubleshooting firmware upgrade installations
The main types of error that might occur during installation of a firmware patch are:

10.8.1 Version problems

A patch targets a particular major.minor release version of the software. It might contain:
• new components that are not in the targeted software
• updates to components that are already in the targeted software.

If there is a problem installing a patch, a dialog box appears to inform you of the problem:

• If the patch targets a version of the software that is not installed, the dialog box shown in
the following figure appears:

Figure 10-4 Error when installing a patch to uninstalled software

In this case the patch is not installed, and the software on the debug hardware unit remains
unchanged. Make sure that you have the patch for the version of the firmware that you
have installed.

• If the patch does not contain any new or updated components (typically because a later
patch has already been installed), the dialog box shown in the following figure appears:

Figure 10-5 Message when installing a patch that has no new components

If you see one of these dialog boxes, click OK.

10.8.2 Errors during file operation on the host

If an error occurs during file operation on the host, a dialog box appears to inform you of the
problem:

• If the error occurs before any data has been written to the compact flash, the dialog box
shown in the following figure appears:

Figure 10-6 Error before data has been written to compact flash

Click OK and begin the installation again.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-9
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
• If some data has already been written to the compact flash when the error occurs, the
debug hardware unit must reboot to clean up the failed installation and revert to the
backed up state. The dialog box shown in the following figure appears:

Figure 10-7 Error during writing to compact flash

Click OK. The debug hardware unit reboots. You can then begin the installation again.

10.8.3 See also

Concepts
• Viewing software version numbers on page 4-3.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-10
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.9 Troubleshooting autoconfigation of a scan chain
When autoconfiguring a scan chain, you might see one of the following errors:

• If debug hardware detects any unpowered devices, it displays the error shown in the
following figure:

Figure 10-8 Error shown when unpowered devices are detected

This error message can also display if the target is connected by the JTAG ribbon cable if
debug hardware is started when the Low Voltage Differential Signaling (LVDS) probe is
connected, or if the probe is connected and used after you started debug hardware.
If you see this error:
— Check the JTAG connection between the debug hardware unit and the target

hardware.
— Ensure that power is supplied to all your devices.

• If debug hardware cannot identify any devices, it displays the error shown in the following
figure:

Figure 10-9 Error shown when no devices are detected

If you see this error:
— manually configure the scan chain if your target has unsupported devices
— try auto-configuring again with a lower clock speed.

Note
 You might have to power-cycle your target hardware when changing the clock

speed.

• The Read ROM Table phase for a CoreSight system fails to find any devices. This might
be because the ROM table is corrupt. Manually configure the scan chain.

• If communication cannot be made with the debug hardware unit in your current
configuration, it displays the error shown in the following figure.

Figure 10-10 Error shown when there is no communication with debug hardware

If you see this error, it might mean that the debug hardware unit in your configuration file
no longer exists, or has been configured with different network settings.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-11
ID121610 Non-Confidential

Troubleshooting your debug hardware unit
10.9.1 See also

Tasks
• Autoconfiguring a scan chain on page 5-11
• Adding devices to the scan chain on page 5-12.
ARM DUI 0498B Copyright © 2010 ARM. All rights reserved. 10-12
ID121610 Non-Confidential

	ARM DSTREAM and RVI Using the Debug Hardware Configuration Utilities
	Contents
	Conventions and feedback
	Getting started with the debug hardware configuration utilities
	2.1 About the debug hardware configuration utilities
	2.1.1 See also

	2.2 Starting the debug hardware configuration utilities
	2.2.1 Starting the RVConfig utility on Windows
	2.2.2 Starting the RVConfig utility on Red Hat Linux
	2.2.3 Accessing the RVConfig utility from your Debugger
	2.2.4 See also

	2.3 Scanning for available debug hardware units
	2.3.1 See also

	2.4 Identifying a debug hardware unit
	2.4.1 See also

	2.5 Connecting to a debug hardware unit
	2.5.1 Prerequisites
	2.5.2 Procedure
	2.5.3 See also

	Configuring network settings for your debug hardware unit
	3.1 About configuring network settings
	3.1.1 See also

	3.2 Determining the correct network settings
	3.2.1 See also

	3.3 The Configure debug_hardware device dialog box
	3.3.1 See also

	3.4 The Configure new debug_hardware device dialog box
	3.4.1 See also

	3.5 Debug hardware unit network settings
	3.5.1 See also

	3.6 Configuring the network settings for a debug hardware unit
	3.6.1 Prerequisites
	3.6.2 Procedure
	3.6.3 See also

	3.7 Modifying the network settings for a debug hardware unit
	3.7.1 Prerequisites
	3.7.2 Procedure
	3.7.3 See also

	3.8 Restarting your debug hardware unit
	3.8.1 See also

	3.9 Troubleshooting
	3.9.1 Why can’t I see my DSTREAM or RVI unit on the network?
	3.9.2 When is it appropriate to assign a fixed IP address to my DSTREAM or RVI unit?
	3.9.3 Why does my debug connection fail when I connect the Mictor cable to my target?
	3.9.4 See also

	Managing the firmware on your debug hardware unit
	4.1 About templates
	4.1.1 See also

	4.2 Viewing software version numbers
	4.2.1 See also

	4.3 Installing a firmware update or patch
	4.3.1 See also

	4.4 Upgrading an LVDS probe
	4.4.1 See also

	4.5 Restarting the debug hardware unit in RVI Update
	4.5.1 See also

	Creating debug hardware target configurations
	5.1 About creating debug hardware target configurations
	5.1.1 See also

	5.2 Creating a debug hardware configuration file
	5.2.1 See also

	5.3 Opening an existing debug hardware configuration file in RVConfig
	5.3.1 See also

	5.4 Configuring a JTAG scan chain
	5.4.1 Managing devices
	5.4.2 Device context menu controls
	5.4.3 Managing a platform file
	5.4.4 Managing trace associations
	5.4.5 See also

	5.5 About configuring a device list
	5.5.1 Autoconfiguration
	5.5.2 Manual configuration
	5.5.3 CoreSight development platforms
	5.5.4 See also

	5.6 Autoconfiguring a scan chain
	5.6.1 See also

	5.7 Adding devices to the scan chain
	5.7.1 Considerations when adding devices to a scan chain
	5.7.2 See also

	5.8 Removing devices from the scan chain
	5.8.1 See also

	5.9 Changing the order of devices on the scan chain
	5.9.1 See also

	5.10 Select Platform dialog box
	5.10.1 See also

	5.11 Export As Platform dialog box
	5.11.1 See also

	5.12 Exporting a configuration to a platform file
	5.12.1 See also

	5.13 Device Properties dialog box
	5.13.1 Device properties
	5.13.2 See also

	5.14 Changing the properties of a device
	5.14.1 See also

	5.15 Setting the clock speed
	5.15.1 Predefined clock speed
	5.15.2 Custom clock speed
	5.15.3 See also

	5.16 About adaptive clocking
	5.16.1 See also

	5.17 Device configuration settings
	5.17.1 Processor device settings
	5.17.2 Non-processor CoreSight device settings
	5.17.3 See also

	5.18 Debug hardware Advanced settings
	5.18.1 See also

	5.19 Trace configuration settings
	5.19.1 See also

	5.20 Configuring Reset options in debug hardware
	5.20.1 See also

	5.21 Configuring SecurCore behavior if the processor clock stops when stepping instructions
	5.21.1 See also

	5.22 Configuring TrustZone enabled processor behavior when debug privileges are reduced
	5.22.1 See also

	5.23 About platform detection and selection
	5.23.1 See also

	5.24 Autodetecting a platform
	5.24.1 See also

	5.25 Manually selecting a platform
	5.25.1 See also

	5.26 Clearing a platform assignment from a debug hardware configuration
	5.26.1 See also

	5.27 Adding new platforms
	5.27.1 See also

	5.28 Adding autoconfigure support for new platforms
	5.28.1 See also

	5.29 Configuring the debug hardware Advanced settings
	5.29.1 See also

	5.30 Saving your changes
	5.30.1 See also

	5.31 Disconnecting from a debug hardware unit
	5.31.1 See also

	5.32 Configuring a target processor for virtual Ethernet
	5.32.1 See also

	5.33 CoreSight device names and classes
	5.33.1 See also

	Configuring CoreSight systems
	6.1 About CoreSight system configuration
	6.1.1 See also

	6.2 Reading the CoreSight ROM table
	6.2.1 See also

	6.3 CoreSight autodetection
	6.3.1 See also

	6.4 Autodetecting Serial Wire Debug
	6.4.1 See also

	6.5 About trace associations
	6.5.1 See also

	6.6 Defining CoreSight trace associations
	6.6.1 See also

	6.7 Format of trace associations
	6.7.1 Example trace association file
	6.7.2 See also

	6.8 Trace Association Editor dialog box
	6.8.1 See also

	6.9 Setting up a CoreSight trace association file
	6.9.1 See also

	6.10 Loading a trace association file
	6.10.1 See also

	6.11 CoreSight topology and associations for the CoreSight DK11
	6.11.1 See also

	6.12 CoreSight topology and associations for the Cortex-R4 FPGA
	6.12.1 See also

	6.13 CoreSight topology and associations for the Cortex-M3 FPGA
	6.13.1 See also

	6.14 CoreSight topology and associations for multiple trace sources
	6.14.1 See also

	6.15 Configuring CoreSight processors
	6.15.1 See also

	6.16 Configuring ARM7, ARM9, and ARM11 processors in CoreSight systems
	6.16.1 See also

	6.17 Configuring CoreSight systems with multiple devices per JTAG-AP multiplexor port
	6.17.1 See also

	Using Trace
	7.1 About using trace hardware
	7.1.1 See also

	7.2 Trace hardware capture rates
	7.2.1 DSTREAM trace hardware capture rates
	7.2.2 See also

	7.3 Configuring trace lines (DSTREAM and RVT2 only)
	7.3.1 See also

	7.4 Configuring your debugger for trace capture
	7.4.1 See also

	Debugging with your debug hardware unit
	8.1 Post-mortem debugging
	8.1.1 Prerequisites
	8.1.2 Procedure
	8.1.3 See also

	8.2 Semihosting
	8.2.1 See also

	8.3 Adding an application SVC handler when using debug hardware
	8.3.1 See also

	8.4 Cortex-M3 semihosting
	8.4.1 See also

	8.5 Hardware breakpoints
	8.5.1 See also

	8.6 Software instruction breakpoints
	8.6.1 See also

	8.7 Processor exceptions
	8.7.1 See also

	8.8 Breakpoints and the program counter
	8.8.1 See also

	8.9 Interaction between breakpoint handling in the debug hardware and your debugger
	8.9.1 See also

	8.10 Problems setting breakpoints
	8.10.1 See also

	8.11 Strategies used by debug hardware to debug cached processors
	8.11.1 See also

	8.12 Considerations when debugging processors with caches enabled
	8.12.1 See also

	8.13 Debugging applications in ROM
	8.13.1 See also

	8.14 Debugging from reset
	8.14.1 See also

	8.15 Debugging with a simulated reset
	8.15.1 See also

	8.16 Debugging with a reset register
	8.16.1 See also

	8.17 Debugging with a target reset
	8.17.1 See also

	8.18 Debugging systems with ROM at the exception vector
	8.18.1 See also

	Configuring debug hardware for GDB
	9.1 About configuring debug hardware for debugging with GDB
	9.1.1 See also

	9.2 Feature support when debugging with GDB
	9.2.1 Features supported
	9.2.2 Features not supported
	9.2.3 See also

	9.3 Debugging modes for GDB
	9.3.1 See also

	9.4 Debug hardware TCP/IP port numbering
	9.4.1 See also

	9.5 DCC modes
	9.5.1 See also

	9.6 Building for standalone target platforms
	9.6.1 See also

	9.7 Methods of connecting from remote GDB sessions
	9.7.1 See also

	9.8 Connection methods for each debugging mode
	9.8.1 Halt-mode debugging
	9.8.2 Monitor-mode debugging
	9.8.3 See also

	9.9 Connections to a target without built-in GDB support (RVI-GDB)
	9.9.1 RVI-GDB Scenarios
	9.9.2 Prerequisites
	9.9.3 Procedure
	9.9.4 See also

	9.10 Connections to a target with a GDB stub (Target-GDB)
	9.10.1 Target-GDB Scenarios
	9.10.2 Prerequisites
	9.10.3 Procedure
	9.10.4 See also

	9.11 Connections to a target GDB stub using Virtual Ethernet/TTY mode (Target-GDB-Virtual Ethernet)
	9.11.1 Target-GDB-Virtual Ethernet Scenario
	9.11.2 Procedure
	9.11.3 See also

	9.12 Connections to a target OS using gdbserver (GDBserver)
	9.12.1 GDBserver Scenario
	9.12.2 Prerequisites
	9.12.3 Procedure
	9.12.4 See also

	9.13 Connections to a target OS using NFS (GDB-NFS)
	9.13.1 Procedure
	9.13.2 See also

	9.14 Preparing your debug hardware for remote GDB connections
	9.14.1 See also

	9.15 Connecting to targets from GDB through debug hardware
	9.15.1 See also

	9.16 Setting DCC parameters
	9.16.1 Examples of setting DCC parameters
	9.16.2 See also

	9.17 DCC and interrupts
	9.17.1 See also

	9.18 Loading and booting a complete system
	9.18.1 See also

	9.19 rvigdbconfig command syntax
	9.19.1 Syntax
	9.19.2 Examples
	9.19.3 See also

	9.20 rviload command syntax
	9.20.1 Syntax
	9.20.2 Examples
	9.20.3 See also

	9.21 RVIahbload command syntax
	9.21.1 Syntax
	9.21.2 Examples
	9.21.3 See also

	9.22 RVIvec command syntax
	9.22.1 Syntax
	9.22.2 Examples
	9.22.3 See also

	9.23 Multiprocessor debugging with GDB and debug hardware
	9.23.1 How connections to multiple processors are allocated
	9.23.2 Considerations when debugging multiple targets with GDB
	9.23.3 See also

	Troubleshooting your debug hardware unit
	10.1 Multiple programs attempting to scan
	10.1.1 See also

	10.2 USB server not accessible
	10.2.1 See also

	10.3 Connection times out
	10.3.1 See also

	10.4 Other active connections
	10.4.1 See also

	10.5 A debug hardware unit is not listed
	10.5.1 See also

	10.6 Auto Configure button is disabled in RVConfig
	10.6.1 See also

	10.7 Remove button is disabled in RVConfig
	10.7.1 See also

	10.8 Troubleshooting firmware upgrade installations
	10.8.1 Version problems
	10.8.2 Errors during file operation on the host
	10.8.3 See also

	10.9 Troubleshooting autoconfigation of a scan chain
	10.9.1 See also

