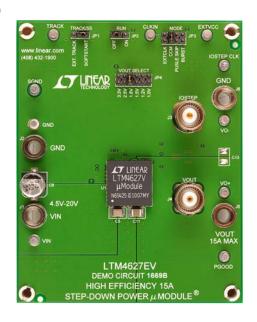


LTM4627EV 15A Step-Down µModule Regulator

DESCRIPTION

Demonstration circuit 1669 features the LTM®4627EV µModule regulator, a high-performance high efficiency step-down regulator. The LTM4627EV has an operating input voltage range of 4.5V to 20V and is able to provide an output current of up to 15A. The output voltage is programmable from 0.6V to 5V and can be remotely sensed with the internal optional differential remote sensing amplifier. The LTM4627EV is a complete DC-DC point of load regulator in a thermally enhanced 15mm x 15mm x 4.32mm LGA package requiring only a few input and output capacitors. This regulator is internally compensated and employs constant frequency current


mode architecture, enabling a fast transient response and stable control loop over a wide range of output capacitance. It supports frequency synchronization and Burst Mode[®] operation for increased light load efficiency. Output voltage tracking is also available through the TRACK/SS pin for supply rail sequencing. The LTM4627 datasheet must be read in conjunction with this demo manual for working on or modifying demo circuit 1669.

Design files for this circuit board are available at http://www.linear.com/demo

Table 1. Performance Summary

PARAMETER	CONDITIONS / NOTES	VALUE
Input Voltage Range		4.5V - 20V
Output Voltage V _{OUT}	jumper selectable	1.0V _{DC} , 1.2V _{DC} , 1.5V _{DC} , 2.5V _{DC} , 1.8V _{DC} , 3.3V _{DC}
Maximum Continuous Output Current	De-rating is necessary for certain operating conditions. See datasheet for details	15A _{DC}
Default Operating Frequency		500kHz
External Clock Sync. frequency range		250kHz – 770kHz
Efficiency	V _{IN} = 12V, V _{OUT} = 1.8V, I _{OUT} = 15A	86.6% See Figure 2

DEMO BOARD PHOTO

QUICK START PROCEDURE

Demonstration circuit 1669 is easy to set up to evaluate the performance of the LTM4627EV. Please refer to Figure 1 for test setup connections and follow the procedure below.

1. With power off, place the jumpers in the following positions for a typical 1.8V_{out} application:

JP1	JP2	JP3	JP4
TRACK/SS	RUN	MODE	Vout Select
SOFTSTART	ON	CCM	1.8V

- 2. Before connecting input supply, load and meters, pre-set the input voltage supply to be less than 20V. Pre-set the load current to 0A.
- 3. With power off, connect the load, input voltage supply and meters as shown in Figure 1.
- Turn on input power supply. The output voltage meter should display the selected output voltage ± 2%.
- 5. Once the proper output voltage is established, adjust the load current within the 0-15A range and observe the load regulation, efficiency, and other parameters. Output voltage ripple

- should be measured at J4 with a BNC cable and oscilloscope.
- 6. To observe increased light load efficiency place the Mode pin jumper (JP3) in the Burst Mode position. To observe increased light load efficiency with a reduced output ripple as compared to Burst Mode[®] place the Mode pin jumper in the Pulse skip position.
- 7. For optional load transient testing apply an adjustable positive pulse signal between IOSTEP CLK and GND pins. The pulse amplitude sets the load step current amplitude. The pulse width should be short (< 1us) and pulse duty cycle should be low (< 15%) to limit the thermal stress on the load transient circuit. The load step current can be monitored with a BNC connected to J3 (15mV/A).

Note:

To set the output voltage to 5V turn off the input supply power, apply the following changes listed below.

R7	R6	R12	JP4
Remove	0 ohm	8.25k (1%)	1V

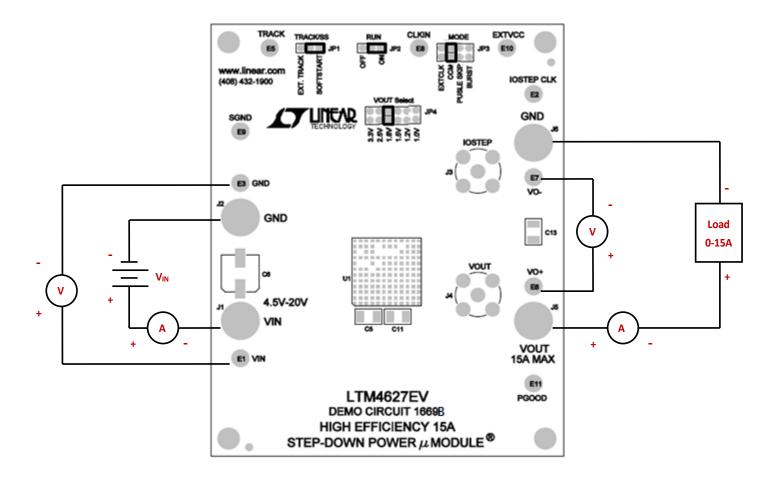


Figure 1. Test Setup of DC1669

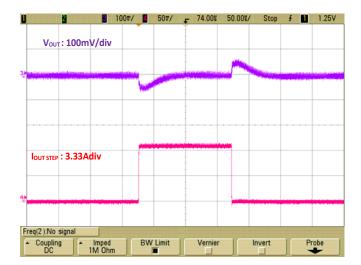
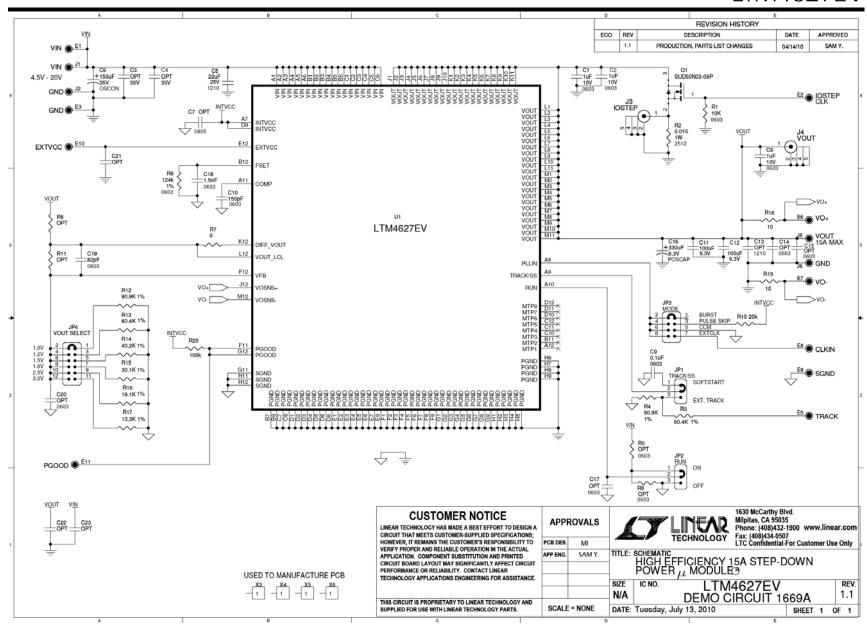



Figure 2. Measured Supply Efficiency at 12Vin & 18Vin

V _{in} (V)	V _{out} (V)	C _{out} Bulk	Cout Ceramic	Other
12	1.8	330uF / 6.3V	2x100uF 6.3V	C10 = 47pF
		POSCAP		C19 = 330pF

232 1: 706 1: 270 850 CU1FNLT1


 V_{in}(V)
 V_{out}(V)
 I_{out} (A)
 Airflow
 Ambient (°C)

 12
 1.8
 15
 Natural Convection
 27

Figure 3. Measured load transient response (7.5A-15A load step)

Figure 4. Measured thermal capture

